A copy of this work was available on the public web and has been preserved in the Wayback Machine. The capture dates from 2020; you can also visit the original URL.
The file type is application/pdf
.
Development of a highly efficient electrochemical flow-through anode based on inner in-site enhanced TiO2-nanotubes array
2020
Environment International
This paper reports on the development of macroporous flow-through anodes. The anodes comprised an enhanced TiO2 nanotube array (ENTA) that was grown on three macroporous titanium substrates (MP-Ti) with nominal pore sizes of 10, 20, and 50 µm. The ENTA was then covered with SnO2-Sb2O3. We refer to this anode as the MP-Ti-ENTA/SnO2-Sb2O3 anode. The morphology, pore structure, and electrochemical properties of the anode were characterized. Compared with the traditional NTA layer, we found that
doi:10.1016/j.envint.2020.105813
pmid:32480113
fatcat:nl5a73nykng2zivv5juukmwahe