Measurement-Driven Algorithm and System Design for Wireless and Datacenter Networks

Varun Gupta
The growing number of mobile devices and data-intensive applications pose unique challenges for wireless access networks as well as datacenter networks that enable modern cloud-based services. With the enormous increase in volume and complexity of traffic from applications such as video streaming and cloud computing, the interconnection networks have become a major performance bottleneck. In this thesis, we study algorithms and architectures spanning several layers of the networking protocol
more » ... ck that enable and accelerate novel applications and that are easily deployable and scalable. The design of these algorithms and architectures is motivated by measurements and observations in real world or experimental testbeds. In the first part of this thesis, we address the challenge of wireless content delivery in crowded areas. We present the AMuSe system, whose objective is to enable scalable and adaptive WiFi multicast. AMuSe is based on accurate receiver feedback and incurs a small control overhead. This feedback information can be used by the multicast sender to optimize multicast service quality, e.g., by dynamically adjusting transmission bitrate. Specifically, we develop an algorithm for dynamic selection of a subset of the multicast receivers as feedback nodes which periodically send information about the channel quality to the multicast sender. Further, we describe the Multicast Dynamic Rate Adaptation (MuDRA) algorithm that utilizes AMuSe's feedback to optimally tune the physical layer multicast rate. MuDRA balances fast adaptation to channel conditions and stability, which is essential for multimedia applications. We implemented the AMuSe system on the ORBIT testbed and evaluated its performance in large groups with approximately 200 WiFi nodes. Our extensive experiments demonstrate that AMuSe can provide accurate feedback in a dense multicast environment. It outperforms several alternatives even in the case of external interference and changing network conditions. Further, our experimental eval [...]
doi:10.7916/d8gb2gh3 fatcat:3nuw6fof3jeqhbsrlc54m47dfq