
An Internet Robotic System Based Common Object
Request Broker Architecture

Songmin Jia and Kunikatsu Takase
Graduate School of Information Systems,
University of Electro-Communications,

1-5-1 Chofugaoka, Chofu-City, Tokyo 182-8585, Japan

Abstract

Because the elderly population is growing while the num-
ber of people to take care of them is declining, we propose
an Internet telerobotic system to assist the aged or disabled
in their homes when their caregivers are away. In this pa-
per we analyze typical teleoperation robotic systems and
design an Internet telerobotic system using CORBA (Com-
mon Object Request Broker Architecture). We detail the sys-
tem’s features, architecture, and implementation. The pro-
posed system gives users the ability to control the robotic
system remotely by an intuitive user interface. The client
can transparently invoke methods on the application servers
across the network without knowing where the application
servers are located, what programming language the appli-
cation is written in, or what operating system is being used.
This is because, in developing and implementing the system,
CORBA for the distributed, object-oriented applications was
used.

1. Introduction

With the rapid development of a standard communication
protocol and a standard human interface, the technology of
the teleoperation of robots, combined with network technol-
ogy, facilitates a new research field, that of Internet teler-
obotic systems. Many Internet robotic systems have been
developed on the Web, such as the Underwater Remotely
Operated Robot, the Museum Tour-Guide Robot, and the
Entertaining Robot. Until now, Internet telerobotic systems
have typically been operated using two ways communica-
tion links between a client and a remote robot system [1].
One is to use CGI (Common Gateway Interface). The Mer-
cury project [2], the CMU Xavier project [3], and KhepOn-
TheWeb [4][5] use this method. CGI circumvents the prob-
lems of static pages by creating a new page for each HTTP
request. Thus a new process must be started for each request.
In addition, a complete HTML page must be generated with
each request, and the resulting page is still static. So the
speed is limited. The other way is to use Java to implement
networking connections. The USA PumaPaint project [6]
and the Guiding Robot through the Web project [7] use this
method. This method avoids the limitations of CGI because
Java programs can be run as applets within the browser and
supply an interactive interface instead of a static one, since
Java is executable within a Web page. But in this case the

client must know the location of all servers to which it wants
to connect. Besides that, Java allows applets to connect only
to the host they were served from, because of security re-
strictions. In this paper we propose an Internet robotic sys-
tem using CORBA. This system allows a client to invoke a
method on a server across a network transparently without
knowing where the application servers are located, or what
programming language and operating system are used.

2. System Features

This system aims to aid aged and disabled persons around
the house when human caregivers are away. The primary
task of the system would be to supply food and a cup of wa-
ter or juice to the aged and disabled. To accomplish these
tasks, it is very important that the robot system can recog-
nize and manipulate common tableware. In our research, we
first implement an Internet hand-eye robotic system using
CORBA. In order to aid aged and disabled persons the hu-
man caregivers can control the telerobotic system to retrieve
and manipulate the desired tableware, by viewing live image
feedback from the robot’s site through a cellular phone and
notebook computer or a common computer. This system has
the following features [8]:

• In this system, Common Object Request Broker Ar-
chitecture (CORBA) was selected because it com-
bines the benefits of object-oriented and distributed
computing and uses an Object Request Broker (ORB)
as the middleware that establishes client/server rela-
tionships between objects.

• This system allows clients to invoke methods on
server objects transparently across the network be-
cause the ORB is capable of delivering the client re-
quests to the objects that can implement the client’s
requests, passing it the parameters and returning the
resulting information across the Internet.

• The components of the system can be implemented
by different programming languages. The Internet
robotic system integrates many elemental technolo-
gies such as image processing, force sensing, motion
planning, and motion control. It is very necessary to
use the different programming language that is opti-
mal to each technology, in order to create the optimal
system.

Proceedings of the 2001 IEEE
International Conference on Robotics & Automation

Seoul, Korea • May 21-26, 2001

0-7803-6475-9/01/$10.00© 2001 IEEE

123 123
1915

• The CORBA-based system can be implemented by a
number of independent subsystems and these subsys-
tems can further be implemented by a number of the
independent objects. These components of the system
can be run independently to implement the applica-
tion. These components of the system are also inte-
grated easily into new systems [9].

3. System Hardware

Fig. 1 shows the architecture of the system.

Input1

Client

ORB

Java
Applet

CORBA IIOP ORB Communication Bus

ORBORBORB ORBORB

IP5000IP5000IP5000IP5000
Camera0

P
C

I B
U

SS

Robot
A/D
CPU

A/D
CPU

Arm
Controller

Arm
Controller

Internet

Camera1Input0

Robot
Control Server

Live Image
Feedback Server

R
S-232C

Figure 1. Architecture of the system

3.1. Vision system

The vision system consists of cameras and an image pro-
cessing board. Two VC-CI MKII cameras are used. Cam-
era0 is positioned at the place where it can provide user an
feedback image easy to understand, Camera1 is used to take
an image of the tableware scattered on the table in this sys-
tem. A high-speed image processing board, IP5000, was
used for processing the obtained images. The resolution of
the vision system is 512 x 512 pixels, and it takes 3.6 mil-
liseconds to process each image.

3.2. Robot arm and its controller

The Mitsubishi Movemaster Super RV-E3J was used in
this system. It consists of a manipulator with five degrees of
freedoms, a controller, and a teaching box. The robot arm
controller is connected to the host computer via an RS232-C
link and controls the arm according to the commands com-
ing from the host computer.

3.3. Robot hand and its controller

To prevent the robot from breaking tableware it handles,
force sensors are affixed to the robot fingers. We designed
the CPU control system to measure the grasp force and the
servo-driving circuit to drive the fingers (Fig. 2). Futaba’s
S3801 high-torque metal gear servo was used to drive the
fingers. Its weight is about 107 g, its operating speed is
231◦/sec , and its output torque is 14.0 Kg·cm. This servo
can act on PWM (Pulse Width Modulation). The basic cy-
cle is 20 ms. We generate input control pulses by a PTC
(Programmable Timer Controller) to control the servo. The
robot hand works according to the commands coming from
the CPU controlled by the host computer via an RS232 link.

PWM
Amplifier

A/D Board

Force Sensing
and Amplifier

Force Sensors

CPU BoardCPU Board

Servo
for Driving

Fingers

Motor Driving

Host Computer

RS-232C

Link

EPROMEPROM

Figure 2. Configuration of control circuit

3.4. Host computer

A workstation with a Pentium III processor running Win-
dows NT 4.0 was used as the host computer. RS232-C Port
0 is connected to the manipulator’s controller, and RS232-C
Port 1 is connected to the CPU board.

4. System Software Implementation

4.1. Web-based user interface

The challenge of designing a user interface is to provide
enough information to let the user operate this system easily
while minimizing transmitted data and maintaining a sim-
ple layout. Besides that, all kinds of complex calculations
should be hidden from the user in order to support a wide
range of users. The Web user interface designed is shown in
Fig. 3. It consists of:

• Live image feedback part: This allows the user see the
robot working in the remote site.

• Robot control commands part: To cope with time de-
lays on the communication path, we provide user task-

123 123
1916

level robot control commands to control the robot.
These commands include “Grasp the green cup,”
”Coffee, Please” etc.. Once one task-level command
button is pushed, the other task-level control com-
mand buttons will be invalid until this task is finished
for safety.

• Message text box: When the user pushes the button
”grasp the spoon”, this command will be sent to server
and the necessary result message will be feedback to
the client by popping one message text box on the
Web user interface.

If the user’s computer can link to the Internet, he or she
can access the robotic system anywhere by using this intu-
itive user interface.

Live Image Feedback Task-Level Commands

Image Control

Message
Text Box

Figure 3. Web-based user interface

4.2. Task-level robot control

In our system, we have implemented robot control server
by the optimal programming language C++ because C++ is
the best language for the core functions of the system, such
as imaging processing, robot control. This server gives user
the ability to control the robotic system remotely at a task-
level [10]. The client can transparently invoke the methods
on this application server across the Internet to recognize
and manipulate the tableware that they want. Fig. 4 shows
robot control server and its interface. The assignments of the
server is as follows:

• Receive commands from the remote World Wide Web
users.

• ORB intercepts the ”call” and is responsible for find-
ing an object that can implement the request, passes it
the commands.

• Find the location and orientation of the tableware scat-
tered on the table by the vision system.

• Generate the task plan and send the commands to the
devices that can implement the tasks.

• ORB returns the feedback results to the remote clients.

Client
Commands

Client
Commands

Object
Request
Broker

(ORB)

Grasp green cup

Grasp blue bowl

Give me spoon

…
…

Grasp green cupGrasp green cup

Grasp blue bowlGrasp blue bowl

Give me spoonGive me spoon

…
…

Provide service for manipulation of spoonsHandle_ Spoon

Provide service for manipulation of cansHandle_Can

Provide service for manipulation of bowlsHandle_ Bowl

Provide service for manipulation of cupsHandle_ Cup

FunctionsInterface Name

Web Browser CORBA Platform Web Server Process

Grasp_ Green_ Cup

Give_Me_Coffee

…
…

Give_Me_Spoon

Grasp_ Blue_ Bowl

Grasp_ Green_ CupGrasp_ Green_ Cup

Give_Me_CoffeeGive_Me_Coffee

…
…

Give_Me_SpoonGive_Me_Spoon

Grasp_ Blue_ Bowl

…

Coffee, Please

Figure 4. Robot control server and its interface

For one method on the robot control server, it consists of
(Fig. 5):

• The information part consists of a vision part and a
force measure part. It is the source of information for
the system.

• The task planning part receives the information from
the information part, recognizes the location and ori-
entation of the tableware scattered on the table, trans-
forms these coordinates to the manipulator’s coordi-
nate system, and generates task plan to achieve the
goal.

• The implementation part executes motion scheduling
generated by the task planning part, and implements
the task according to the commands coming from the
server computer.

• The communication part is responsible for the com-
munication between the server computer, the robot’s
arm and the robot hand’s controller via RS232-C
links.

4.3. Live image feedback

This task is provided by the live image feedback server
implemented by C++. This server allows live image feed-
back from the camera and continuously sends live images

123 123
1917

Robot’s arm
control

Task
finish

EndEnd

Implementation part

Coordinate
transformations

Recognition
of tableware

Task
scheduling

Coordinate
transformations

Recognition
of tableware

Task
scheduling

Communication
part

Communication
part

Task planning part

Robot’s hand
control

Force
measure part

Vision
part

Force
measure part

Vision
part

Information part

Grasp_Green_Cup Method:

Tableware
database

Environment
database

Return results

Figure 5. Method of robot control server

of the working robot to the client according to the user’s re-
quests. It works as:

• Receive image control commands from the remote
users.

• ORB intercepts the commands and transfers the re-
quests to live image feedback server.

• Get the new image by camera0 and change the image
into a BMP format by IP5000 image processing board.

• Compress this image into JPEG format.

• Return the new image with the last information to the
client by ORB.

4.4. Server implementation by IDL

In CORBA, we use OMG interface definition language
(IDL) to define the object interface and specify the types
and operations that the object supports. IDL has features
like language independence, distributed service specifica-
tion, definition of complex data types, and hardware inde-
pendence. By compiling this interface with an IDL com-
piler for mapping to client/server source code in a specific
programming language, we can get client stub and server
skeleton source code for communication between client and
server. Fig. 6 shows our server implementation by IDL in
this system.

5. Recognition Strategy for Tableware

For long tableware, if we want to handle them exactly, we
must know not only the location but also its orientation. In

ORB Core

IDL
Compiler

IDL
Compiler

IDL
Compiler

IDL
Compiler

RCS.idl LIFS.idl

Robot
Control
Server

Live Image
Feedback
Server

Client

Server
Skeletons

Server
Skeletons

Client
Stubs

Figure 6. Server implementation by IDL

order to implement real-time recognition of the tableware,
the color-based technique was used. In this technique, we
assume that spoons and forks consist of two different color
parts. Using this technique, long tableware recognition can
be replaced by the simple mark recognition because there is
one-to-one correspondence between tableware and different
combination of color marks. We can create the tableware ’s
geometric model and entry them beforehand. By doing this
we can recognize the tableware easily and quickly [11].

Assume that there are two differently colored parts on

Y

X

y

A1(Xa1,Ya1)

A2(Xa2,Ya2)v1

v2

v5

v6

V3
V4

V7

V8

:color1

:color2

L

x

Figure 7. Model of tableware

one fork (Fig. 7). We can get each center point of the color
part by using image processing. Let us call them A1 and
A2. Xa1, Ya1, Xa2, and Ya2 are their coordinates with re-
spect to an absolute world reference coordinate (X, Y). A1
is assumed to be the origin of the vector, the unit of vector
along the x and y axes, and the length of this vector can be
given by

ex =
(

Xa2 − Xa1

L
,
Ya2 − Ya1

L

)T

(1)

123 123
1918

ey =
(
−Ya2 − Ya1

L
,
Xa2 − Xa1

L

)T

(2)

L =
√

(Xa2 − Xa1)2 + (Ya2 − Ya1)2 (3)

In order to know the shape of the tableware, we define
some different feature points for different kinds of tableware.
For example, we can choose v1, v2, v3, v4, v5, v6, v7, and
v8 vertices as the feature points of the fork, and we can find
their x, y coordinates under the object coordinate frame by:

{
xvi = (Xvi − Xa1, Yvi − Ya1) · ex

yvi = (Xvi − Xa1, Yvi − Ya1) · ey
(4)

Here, Xvi, Yvi, Xa1, Ya1 can be gotten by moving the
cursor on the monitor. The posture angle (with respect to X
axis) of the tableware can be calculated by

θ =

arctan Ya2−Ya1
Xa2−Xa1

if Ya2 − Ya1 > 0

2π + arctan Ya2−Ya1
Xa2−Xa1

if Ya2 − Ya1 < 0
(5)

For circular tableware, the quick correlation calculation
was used. Correlation calculation is a method that evaluates
the matching between the template image registered before-
hand and the input image obtained from the camera. The
value of a correlation calculation varies from 0 to 1 accord-
ing to the case. It equals 1 if the part of the search area
is completely the same as the template image. It is bet-
ter that the illumination of the template gotten is the same
as that of the applied condition. In spite of doing this, the
template is also circumscribed the other problems. We have
done some experiments such as changing the position and
the angle seen from the fixed camera coordinate frame. The
experiment results are shown in Fig. 8.

{
0.88 � 0.92 ; � : 0 � 360º

0.70 � 0.92 ; 400 x 300 mm
{

0.78 � 0.91 ; �: 0 � 360º

0.67 � 0.91 ; 400 x 300 mm

Template (a) Template (b)

Figure 8. Templates and its experiment results

According the results of our experiments, we know not
only a different object has a different correlation value, but

also the same object will have a different correlation value
in different condition. For example, template (a)’s correla-
tion value will change from 0.88 to 0.92 if we change the
angle seen from the fixed camera coordinate frame from 0◦

to 360◦, and correlation value will change from 0.70 to 0.92
if we move it to different position on the table. This re-
sults from tableware’s no uniform distribution and no uni-
form illumination under the application environment. So, we
must measure the minimum correlation value and it should
be bigger enough than the one that can distinguish itself
from the other tableware and the environment. We have
done some experiments and made up tableware’s correla-
tion matrix shown in Fig. 9. According this, we can know
whether the tableware can be distinguished itself from the
other tableware and the background or not. For example,
for template(b), the correlation value of background is about
0.2, the maximum of the correlation value of the other table-
ware is about 0.3, the correlation value of the template(b)
changed from 0.67～0.91. According to this, we can dis-
tinguish template(b) from the other tableware and the back-
ground.

Figure 9. Tableware’s correlation matrix

6. Experimental Results

In our system, we have implemented two application
servers (Robot Control Server and Live Image Feedback
Server) by C++. We also used Java for the client because
Java applets are capable of directly accessing CORBA ap-
plication servers via IIOP and are easy to run within Web
browsers. This system have been accessed by the operators
from Tama-City (Client1), Saitama-City (Client2), Kyoto
University (Client3), Japan and Chicago (Client4), America
etc.. The specifications of PCs and the communication paths
of Client1, Client2, Client3, Client4 are shown in Fig. 10.
Some intervals between the users pushing the ”start” but-
ton and the new image with the latest information showing
have also been recorded. The average time of 10 times for

123 123
1919

Client1 is about 26 seconds, for Client2 is about 10 seconds,
for Client3 is about 8.8 seconds, and for Client4 is about 6.8
seconds. These values may vary according to the specifica-
tions of the user’ s computer, the communication path and
the time the operator accesses the system. Fig. 10 shows the
scene of users accessing this system. When the remote user
pushes the command ”Coffee, Please”, the system can auto-
matically find the coffee can and execute this task robustly.

ISDNModem

Client1:
Tama,

Pentium II
64MB, 56kbps

Client2:
Saitama,

Celeron 400MHz
64MB, 64kbps

Client3:
Kyoto Univ.
Pentium II

128MB

Client4:
Chicago, USA
Pentium III

128MB

World Wide Internet

Remote Robotic System

ISDNModem

Client1:
Tama,

Pentium II
64MB, 56kbps

Client2:
Saitama,

Celeron 400MHz
64MB, 64kbps

Client3:
Kyoto Univ.
Pentium II

128MB

Client4:
Chicago, USA
Pentium III

128MB

World Wide Internet

Remote Robotic System

Figure 10. Remote machines on the Internet

We also have done the experiments as: the Robot Control
Server is working and the Live Image Feedback Server is
down. In such a case, the user can still access the Robot
Control Server normally. Similarly, the user can still access
the Live Image Feedback Server normally when the Robot
Control Server is down.

7. Conclusions

By introducing CORBA communication into a Java ap-
plet, a Java client is capable of directly accessing CORBA
application servers via IIOP instead of static, it can run on
different platforms, and it can transparently invoke meth-
ods on the application servers across the network. This lets
the system overcome the shortcomings of the other typical
Internet telerobotic systems. Besides that, The CORBA-
based system can be implemented by a number of indepen-
dent subsystems and these subsystems can further be im-
plemented by a number of the independent objects. These
components of the system can be run independently to im-
plement the application. The other components of the sys-
tem can work normally even if there are troubles with some
of them. So, using CORBA for implementing Internet tele-
operation systems is very effective and much more flexible
and robust.

8. Acknowledgments

We would like to thank Dr. Hirohisa Hirukawa (ETL) for
his helpful comments.

References

[1] Barney Dalton and Ken Taylor, A Framework for In-
ternet Robotics, Proc. of 1998 IEEE/RSJ, Conference
on Intelligent Robots and Systems; Workshop on Web
Robots, pp.15-23, 1998.

[2] K.Goldberg, K.Mascha, M.Genter, N.Rothenberg,
C.Sutter and J.Wiegley, Desktop teleoperation via the
world wide web, Proc. of 1995 IEEE Conference on
Robotics and Automation, pp.654-659, 1995.

[3] Reid Simmons, Xavier: An Autonomous Mobile Robot
on the Web, Proc. of 1998 IEEE/RSJ Conference on
Intelligent Robots and Systems; Workshop on Web
Robots, pp.43-49, 1998.

[4] Patric Saucy, KhepOnTheWeb: One Year of Access to a
Mobile Robot on the Internet, Proc. of 1998 IEEE/RSJ
Conference on Intelligent Robots and Systems; Work-
shop on Web Robots, pp.23-31, 1998.

[5] Patrick Saucy and Francesco Mondada, Open Access
to a Mobile Robot on the Internet, IEEE Robotics and
Automation Magazine, Vol.7, No.1, pp.41-47, 2000.

[6] Matthew Stein, Painting on the Web, The PumaPaint
Project, Proc. of 1998 IEEE/RSJ Conference on Intelli-
gent Robots and Systems ; Workshop on Web Robots,
pp.37-43, 1998.

[7] Roland Siegwart, Cedric Wannaz, Patrick Garcia and
Remy Blank, Guiding Mobile Robots through the Web,
Proc. of 1998 IEEE/RSJ Conference on Intelligent
Robots and Systems ; Workshop on Web Robots, pp.1-
7, 1998.

[8] Seán Baker, CORBA Distributed Objects Using Orbix,
ACM Press, UK, 1997.

[9] Nestor Michelena, Christopher Scheffer, Ryan Fellini,
and Panos Papalambros, CORBA-Based Object-
Oriented Framework for Distributed System Design,
MECH. STRUCT. & MACH., 27(4), 365-392, 1999.

[10] Songmin Jia and Kunikatsu Takase, Network-Based
Human Assist Robotic System Using CORBA, The
Sixth International Symposium on Artificial Life and
Robotics, pp.105-109, 2001.

[11] Y.Hada and K.Takase, Task-Level Feedback Control of
a Robot Based on the Integration of Real-Time Recog-
nition and Motion Planning, Proc. of 28th International
Symposium on Robotics, pp.1353-1363, 1997.

123 123
1920

	MAIN MENU
	PREVIOUS MENU

	Search CD-ROM
	Search Results
	Print

