A copy of this work was available on the public web and has been preserved in the Wayback Machine. The capture dates from 2021; you can also visit the original URL.
The file type is application/pdf
.
GAN-based image deblurring using DCT loss with customized datasets
2021
IEEE Access
In this paper, we propose a high quality image deblurring method that uses discrete cosine transform (DCT) and requires less computational complexity. We train our model on a new dataset which is customized to include images with large motion blurs. Recently, Convolutional Neural Network (CNN) and Generative Adversarial Network (GAN) based algorithms have been proposed for image deblurring. Moreover, multi-scale and multi-patch architectures of CNN restore blurred images clearly and suppress
doi:10.1109/access.2021.3116194
fatcat:ck2y2svfqzax7newy3nmg7zvtu