A copy of this work was available on the public web and has been preserved in the Wayback Machine. The capture dates from 2017; you can also visit the original URL.
The file type is application/pdf
.
Experimental Methods for Investigating the Discrete Droplet Impact Phenomena of a Model Fluid Relevant for LNG Heat Exchangers
2013
Volume 1C, Symposia: Gas-Liquid Two-Phase Flows; Industrial and Environmental Applications of Fluid Mechanics; Issues and Perspectives in Automotive Flows; Liquid-Solids Flows; Multiscale Methods for Multiphase Flow; Noninvasive Measurements in Single and Multiphase Flows; Numerical Methods for Multiphase Flow; Transport Phenomena in Energy Conversion From Clean and Sustainable Resources; Transport Phenomena in Materials Processing and Manufacturing Processes; Transport
unpublished
To improve knowledge on the design and operational issues of heat exchangers used in the liquefaction process of liquefied natural gas (LNG), experiments were conducted to investigate the complex two-phase flow phenomena in an n-pentane environment. Special focus was placed on characterizing the impact thresholds (bouncing, coalescence, splashing, etc.) of npentane droplets impinging on a flowing liquid film of various angles. In the phase diagram of velocity and diameter, the threshold of
doi:10.1115/fedsm2013-16108
fatcat:nuljfbjw2vbexbje7ihborbpeu