Neuropilin 2 signaling mediates corticostriatal transmission, spine maintenance, and goal-directed learning in mice [article]

Maxime Assous, Edward Martinez, Carol Eisenberg, Aleksandra Kosc, Kristie Varghese, Diego Espinoza, Shaznaan Bhimani, Fulva Shah, James Tepper, Michael W. Shiflett, Tracy S. Tran
2019 bioRxiv   pre-print
The striatum represents the main input structure of the basal ganglia, receiving massive excitatory input from the cortex and the thalamus. The development and maintenance of cortical input to the striatum is crucial for all striatal function including many forms of sensorimotor integration, learning and action control. The molecular mechanisms regulating the development and maintenance of corticostriatal synaptic transmission are unclear. Here we show that the guidance cue, Semaphorin 3F and
more » ... s receptor Neuropilin 2 (Nrp2), influence dendritic spine maintenance, corticostriatal short-term plasticity, and learning in adult male and female mice. We found that Nrp2 is enriched in adult layer V pyramidal neurons, corticostriatal terminals, and in developing and adult striatal spiny projection neurons (SPNs). Loss of Nrp2 increases SPN excitability and spine number, reduces short-term facilitation at corticostriatal synapses, and impairs goal-directed learning in an instrumental task. Acute deletion of Nrp2 selectively in adult layer V cortical neurons produces a similar increase in the number of dendritic spines and presynaptic modifications at the corticostriatal synapse in the Nrp2-/- mouse, but does not affect the intrinsic excitability of SPNs. Furthermore conditional loss of Nrp2 impairs sensorimotor learning on the accelerating rotarod without affecting goal-directed instrumental learning. Collectively, our results identify Nrp2 signaling as essential for the development and maintenance of the corticostriatal pathway and may shed novel insights on neurodevelopmental disorders linked to the corticostriatal pathway and semaphorin signaling.
doi:10.1101/659342 fatcat:ebinfwhqdfbtteyau23k5sbbgy