Space Characterizations of Complexity Measures and Size-Space Trade-Offs in Propositional Proof Systems

Theodoros Papamakarios, Alexander Razborov, Mikołaj Bojańczyk, Emanuela Merelli, David P. Woodruff
2022
We identify two new big clusters of proof complexity measures equivalent up to polynomial and log n factors. The first cluster contains, among others, the logarithm of tree-like resolution size, regularized (that is, multiplied by the logarithm of proof length) clause and monomial space, and clause space, both ordinary and regularized, in regular and tree-like resolution. As a consequence, separating clause or monomial space from the (logarithm of) tree-like resolution size is the same as
more » ... g a strong trade-off between clause or monomial space and proof length, and is the same as showing a super-critical trade-off between clause space and depth. The second cluster contains width, Σ₂ space (a generalization of clause space to depth 2 Frege systems), both ordinary and regularized, as well as the logarithm of tree-like size in the system R(log). As an application of some of these simulations, we improve a known size-space trade-off for polynomial calculus with resolution. In terms of lower bounds, we show a quadratic lower bound on tree-like resolution size for formulas refutable in clause space 4. We introduce on our way yet another proof complexity measure intermediate between depth and the logarithm of tree-like size that might be of independent interest.
doi:10.4230/lipics.icalp.2022.100 fatcat:ww7fkcvxava2dd52fukgv5fqg4