A copy of this work was available on the public web and has been preserved in the Wayback Machine. The capture dates from 2011; you can also visit the original URL.
The file type is application/pdf
.
Regularized estimation of hemodynamic response function for fMRI data
2010
Statistics and its Interface
One of the primary goals in analyzing fMRI data is to estimate the Hemodynamic Response Function (HRF), which is a large-dimensional parameter vector possessing some form of sparsity. This paper introduces a varyingdimensional model for the HRF, and develops novel regularization methods for estimating the HRF from fMRI time series via incorporating the sparsity feature. Particularly, we present three types of penalty choice methods: the Lasso, the adaptive Lasso and the SCAD. Simulation studies
doi:10.4310/sii.2010.v3.n1.a2
fatcat:h5pnpoqxeray5nfnbt5etn6qsa