A copy of this work was available on the public web and has been preserved in the Wayback Machine. The capture dates from 2022; you can also visit the original URL.
The file type is application/pdf
.
Proof Theory of Riesz Spaces and Modal Riesz Spaces
2022
Logical Methods in Computer Science
We design hypersequent calculus proof systems for the theories of Riesz spaces and modal Riesz spaces and prove the key theorems: soundness, completeness and cut elimination. These are then used to obtain completely syntactic proofs of some interesting results concerning the two theories. Most notably, we prove a novel result: the theory of modal Riesz spaces is decidable. This work has applications in the field of logics of probabilistic programs since modal Riesz spaces provide the algebraic
doi:10.46298/lmcs-18(1:32)2022
fatcat:y5okiphl7zc3fc2iy3pwe76oqe