Accelerating Event Detection with DGCNN and FPGAs

Zhe Han, Jingfei Jiang, Linbo Qiao, Yong Dou, Jinwei Xu, Zhigang Kan
2020 Electronics  
Recently, Deep Neural Networks (DNNs) have been widely used in natural language processing. However, DNNs are often computation-intensive and memory-expensive. Therefore, deploying DNNs in the real world is very difficult. In order to solve this problem, we proposed a network model based on the dilate gated convolutional neural network, which is very hardware-friendly. We further expanded the word representations and depth of the network to improve the performance of the model. We replaced the
more » ... igmoid function to make it more friendly for hardware computation without loss, and we quantized the network weights and activations to compress the network size. We then proposed the first FPGA (Field Programmable Gate Array)-based event detection accelerator based on the proposed model. The accelerator significantly reduced the latency with the fully pipelined architecture. We implemented the accelerator on the Xilinx XCKU115 FPGA. The experimental results show that our model obtains the highest F1-score of 84.6% in the ACE 2005 corpus. Meanwhile, the accelerator achieved 95.2 giga operations (GOP)/s and 13.4 GOPS/W in performance and energy efficiency, which is 17/158 times higher than the Graphics Processing Unit (GPU).
doi:10.3390/electronics9101666 fatcat:uoabndnjgfgf7ajwyozs33f47q