A copy of this work was available on the public web and has been preserved in the Wayback Machine. The capture dates from 2018; you can also visit the original URL.
The file type is application/pdf
.
Reducing seed noise in personalized PageRank
2016
Social Network Analysis and Mining
Network based recommendation systems leverage the topology of the underlying graph and the current user context to rank objects in the database. Random-walk based techniques, such as PageRank, encode the structure of the graph in the form of a transition matrix of a stochastic process from which the significances of the nodes in the graph are inferred. Personalized PageRank (PPR) techniques complement this with a seed node set which serves as the personalization context. In this paper, we note
doi:10.1007/s13278-015-0309-6
fatcat:tkmclvga55fjtgnb7rdiyoh2he