An adaptive greedy algorithm with application to sparse NARMA identification

Gerasimos Mileounis, Behtash Babadi, Nicholas Kalouptsidis, Vahid Tarokh
<span title="">2010</span> <i title="IEEE"> 2010 IEEE International Conference on Acoustics, Speech and Signal Processing </i> &nbsp;
Greedy algorithms form an essential tool for compressed sensing. However, their inherent batch mode discourages their use in time-varying environments due to significant complexity and storage requirements. In this paper a powerful greedy scheme developed in [1, 2] is converted into an adaptive algorithm which is applied to estimation of nonlinear channels. Performance is assessed via computer simulations on a variety of linear and nonlinear channels; all confirm significant improvements over conventional methods.
<span class="external-identifiers"> <a target="_blank" rel="external noopener noreferrer" href="">doi:10.1109/icassp.2010.5495838</a> <a target="_blank" rel="external noopener" href="">fatcat:woggtoo3rbfa7gnx6krpgdilkm</a> </span>
<a target="_blank" rel="noopener" href="" title="fulltext PDF download" data-goatcounter-click="serp-fulltext" data-goatcounter-title="serp-fulltext"> <button class="ui simple right pointing dropdown compact black labeled icon button serp-button"> <i class="icon ia-icon"></i> Web Archive [PDF] <div class="menu fulltext-thumbnail"> <img src="" alt="fulltext thumbnail" loading="lazy"> </div> </button> </a> <a target="_blank" rel="external noopener noreferrer" href=""> <button class="ui left aligned compact blue labeled icon button serp-button"> <i class="external alternate icon"></i> </button> </a>