Optimizing Ranking Systems Online as Bandits [article]

Chang Li
<span title="2021-10-12">2021</span> <i > arXiv </i> &nbsp; <span class="release-stage" >pre-print</span>
Ranking system is the core part of modern retrieval and recommender systems, where the goal is to rank candidate items given user contexts. Optimizing ranking systems online means that the deployed system can serve user requests, e.g., queries in the web search, and optimize the ranking policy by learning from user interactions, e.g., clicks. Bandit is a general online learning framework and can be used in our optimization task. However, due to the unique features of ranking, there are several
more &raquo; ... hallenges in designing bandit algorithms for ranking system optimization. In this dissertation, we study and propose solutions for four challenges in optimizing ranking systems online: effectiveness, safety, nonstationarity, and diversification. First, the effectiveness is related to how fast the algorithm learns from interactions. We study the effective online ranker evaluation task and propose the MergeDTS algorithm to solve the problem effectively. Second, the deployed algorithm should be safe, which means the algorithm only displays reasonable content to user requests. To solve the safe online learning to rank problem, we propose the BubbleRank algorithm. Third, as users change their preferences constantly, the algorithm should handle the nonstationarity. We formulate this nonstationary online learning to rank problem as cascade non-stationary bandits and propose CascadeDUCB and CascadeSWUCB algorithms to solve the problem. Finally, the contents in ranked lists should be diverse. We consider the results diversification task and propose the CascadeHybird algorithm that considers both the item relevance and results diversification when learning from user interactions.
<span class="external-identifiers"> <a target="_blank" rel="external noopener" href="https://arxiv.org/abs/2110.05807v1">arXiv:2110.05807v1</a> <a target="_blank" rel="external noopener" href="https://fatcat.wiki/release/mp3fctx6sffhjej7idwc7v33ca">fatcat:mp3fctx6sffhjej7idwc7v33ca</a> </span>
<a target="_blank" rel="noopener" href="https://web.archive.org/web/20211015000531/https://arxiv.org/pdf/2110.05807v1.pdf" title="fulltext PDF download" data-goatcounter-click="serp-fulltext" data-goatcounter-title="serp-fulltext"> <button class="ui simple right pointing dropdown compact black labeled icon button serp-button"> <i class="icon ia-icon"></i> Web Archive [PDF] <div class="menu fulltext-thumbnail"> <img src="https://blobs.fatcat.wiki/thumbnail/pdf/da/ec/daecc30d78c671600fcddf9f04e27696a39c84ee.180px.jpg" alt="fulltext thumbnail" loading="lazy"> </div> </button> </a> <a target="_blank" rel="external noopener" href="https://arxiv.org/abs/2110.05807v1" title="arxiv.org access"> <button class="ui compact blue labeled icon button serp-button"> <i class="file alternate outline icon"></i> arxiv.org </button> </a>