Practical screening tools for sarcopenia in patients with systemic sclerosis

Vanessa Hax, Rafaela Cavalheiro do Espírito Santo, Leonardo Peterson dos Santos, Mirian Farinon, Marianne Schrader de Oliveira, Guilherme Levi Três, Andrese Aline Gasparin, Nicole Pamplona Bueno de Andrade, Markus Bredemeier, Ricardo Machado Xavier, Rafael Mendonça da Silva Chakr, Joao Felipe Mota
2021 PLoS ONE  
Introduction In view of the method of diagnosing sarcopenia being complex and considered to be difficult to introduce into routine practice, the European Working Group on Sarcopenia in Older People (EWGSOP) recommends the use of the SARC-F questionnaire as a way to introduce assessment and treatment of sarcopenia into clinical practice. Only recently, some studies have turned their attention to the presence of sarcopenia in systemic sclerosis (SSc).There is no data about performance of SARC-F
more » ... ormance of SARC-F and other screening tests for sarcopenia in this population. Objective To compare the accuracy of SARC-F, SARC-CalF, SARC-F+EBM, and Ishii test as screening tools for sarcopenia in patients with SSc. Methods Cross-sectional study of 94 patients with SSc assessed by clinical and physical evaluation. Sarcopenia was defined according to the revised 2019 EWGSOP diagnostic criteria (EWGSOP2) with assessments of dual-energy X-ray absorptiometry, handgrip strength, and short physical performance battery (SPPB). As case finding tools, SARC-F, SARC-CalF, SARC-F+EBM and Ishii test were applied, including data on calf circumference, body mass index, limitations in strength, walking ability, rising from a chair, stair climbing, and self reported number of falls in the last year. The screening tests were evaluated through receiver operating characteristic (ROC) curves. Standard measures of diagnostic accuracy were computed using the EWGSOP2 criteria as the gold standard for diagnosis of sarcopenia. Results Sarcopenia was identified in 15 (15.9%) patients with SSc by the EWGSOP2 criteria. Area under the ROC curve of SARC-F screening for sarcopenia was 0.588 (95% confidence interval (CI) 0.420–0.756, p = 0.283). The results of sensitivity, specificity, positive likelihood ratio (+LR), negative likelihood ratio (-LR) and diagnostic Odds Ratio (DOR) with the EWGSOP2 criteria as the gold standard were 40.0% (95% CI, 19.8–64.2), 81.0% (95% CI, 71.0–88.1), 2.11 (95% CI, 0.98–4.55), 0.74 (95% CI, 0.48–1.13) and 2.84 (95% CI, 0.88–9.22), respectively. SARC-CalF and SARC-F+EBM showed better sensitivity (53.3%, 95% CI 30.1–75.2 and 60.0%, 95% CI 35.7–80.2, respectively) and specificity (84.8%, 95% CI 75.3–91.1 and 86.1%, 95% CI 76.8–92.0, respectively) compared with SARC-F. The best sensitivity was obtained with the Ishii test (86.7%, 95% CI 62.1–96.3), at the expense of a small loss of specificity (73.4%, 95% CI 62.7–81.9). Comparing the ROC curves, SARC-F performed worse than SARC-CalF, SARC-F+EBM and Ishii test as a sarcopenia screening tool in this population (AUCs 0.588 vs. 0.718, 0.832, and 0.862, respectively). Direct comparisons between tests revealed differences only between SARC-F and Ishii test for sensitivity (p = 0.013) and AUC (p = 0.031). Conclusion SARC-CalF, SARC-F+EBM, and Ishii test performed better than SARC-F alone as screening tools for sarcopenia in patients with SSc. Considering diagnostic accuracy and feasibility aspects, SARC-F+EBM seems to be the most suitable screening tool to be adopted in routine care of patients with SSc.
doi:10.1371/journal.pone.0245683 pmid:33481872 fatcat:dphe7fz2ebdp5fk7odvhji6hm4