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Abstract

For a given text which has been encoded by a static Huffman code, the possibility of locating a given
pattern directly in the compressed text is investigated. The main problem is one of synchronization, as an

occurrence of the encoded pattern in the encoded text does not necessarily correspond to an occurrence of

the pattern in the text. A simple algorithm is suggested which reduces the number of erroneously declared

matches. The probability of such false matches is analyzed and empirically tested.

� 2004 Elsevier Ltd. All rights reserved.
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1. Introduction

The general approach for looking for a pattern in a file that is stored in its compressed form, is
first decompressing and then applying one of the known pattern matching algorithms to the
decoded file. In many cases, however, in particular on the Internet, files are stored in their original
form, for if they were compressed, the host computer would have to provide either memory space
for each user in order to store the decoded file, or appropriate software to support on the fly
decoding and matching. Both requirements are not reasonable, as many users can simultaneously
quest the same information reservoir which will either demand a large quantity of free memory, or
put a great burden on the host CPU. Another possibility is transferring the compressed files to the
personal computer of the user, and then decoding the files. However, we then assume that the user
qThis is an extended version of a paper that has been presented at the Data Compression Conference DCC’01,
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knows the exact location of the information she or he is looking for; if this is not the case, much
unneeded information will be transferred.

There is therefore a need to develop methods for directly searching within a compressed file.
This so-called compressed matching problem has been introduced by Amir and Benson (1992), and
has recently got a lot of attention (Amir, Benson, & Farach, 1996; Ga�sieniec & Rytter, 1999;
Farach & Thorup, 1995; K€arkk€ainen, Navarro, & Ukkonen, 2000; Kida, Takeda, Shinohara, &
Arikawa, 1999; DeMoura, Navarro, Ziviani, & Baeza-Yates, 1998; Navarro & Raffinot, 1999;
Shibata, Kida, Takeda, Shinohara, & Arikawa, 2000). It is a variant of the classical pattern
matching problem, in which one is given a pattern P and a (usually much larger) text T , and one
tries to locate the first or all occurrences of P in T . In the compressed version of this problem, the
text is supposed to be stored in some compressed form.

For complementary encoding and decoding functions E and D, that is, functions such that for
any text T , one gets DðEðT ÞÞ ¼ T , our aim is to search for EðPÞ in EðT Þ, rather than the usual
approach which searches for the pattern P in the decompressed text DðEðT ÞÞ. A necessary con-
dition is then that the pattern P should be encoded in the same way throughout the text, which is
not the case for arithmetic coding and for dynamic methods such as adaptive Huffman coding.
The various Lempel–Ziv variants are also dynamic methods, but for them compressed matching is
possible: all of the fragments of the pattern P appear in the compressed text, though not neces-
sarily contiguously and not necessarily in the same order as in the pattern, since parts of the
compressed text are pointers to an external dictionary or to previous locations in the given text
itself. Much of the previous work on compressed pattern matching concentrates on Lempel–Ziv
encodings. A different approach is not to adhere to a known compression scheme, but to devise a
new one that is specially adapted to allow efficient searches directly in the compressed file
(Manber, 1997; Klein & Shapira, 2000).

Fukamachi, Shinohara, and Takeda (1992) propose a pattern matching algorithm for Huffman
encoded strings, based on the Aho–Corasick algorithm. In order to reduce the processing time due
to bit per bit state transitions, they use a special code in which the lengths of the codewords are
multiples of four bits and present an algorithm for pattern matching in this kind of compressed
files. Shibata, Matsumoto, Takeda, Shinohara, and Arikawa (2000) present an efficient realization
of pattern matching for Huffman encoded text, substituting t consecutive state transitions of the
original machine by a single one. When t is a multiple of 4, this results in a speedup. Takeda et al.
(2002) build a pattern matching machine by embedding a DFA that recognizes a set of codewords
into an ordinary Aho–Corasick machine, and then make it run over a text byte after byte. Their
technique can handle any prefix code including Huffman codes.

DeMoura, Navarro, Ziviani, and Baeza-Yates (2000) propose a compression scheme that uses a
word based byte oriented Huffman encoding. The first bit of each byte is used to mark the
beginning of a word. Exact and approximate pattern matching can be done on the encoded text
without decoding. Their algorithm runs twice as fast as agrep, but compression performance is
slightly hurt. Moreover, the compression method is not applicable to texts like DNA sequences,
which cannot be segmented into words.

In the present work, we are interested in searching within the original Huffman encoded text
without any modification. We concentrate on static Huffman coding, for which the problem might
at first sight seem trivial. It is, however, not always straightforward, since an instance of EðP Þ in
the compressed text is not necessarily the encoding of an instance of P in the original text T , and



Fig. 1. Example of a false match.
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might be crossing codeword boundaries. Consider for example the Huffman code f00; 010; 011;
100; 101; 1100; 1101; 111g for the characters T, N, A, O, W, E, B and C respectively. The binary
string 1000101100 is the encoding of the string one. Suppose, however, that we are searching
for the pattern two: we could find E(two) starting at the third bit and extending to the end of
E(one), as shown in Fig. 1.

The problem is thus one of verifying that the occurrence detected by the pattern matching
algorithm is aligned on a codeword boundary. In the next section, we suggest an algorithm for
compressed matching in Huffman encoded files. Section 3 analyses the probability of getting false
matches and experimental results are presented in Section 4.
2. Compressed pattern matching for Huffman codes

For a given text T over some alphabet R, we consider the Huffman encoded text EðT Þ. In order
to locate a pattern P in T , we start by encoding the pattern and then apply one of the known
pattern matching techniques to find EðPÞ in EðT Þ. Note that Boyer and Moore’s (1977) algorithm,
with its sub-linear performance might not be the best choice here, as we deal with the binary
alphabet f0; 1g. An attractive alternative in our case is Karp and Rabin’s (1987) probabilistic
pattern matching, specifically because our suggested solution is also probabilistic in nature.

If the algorithm does not find any occurrence, we know that P does not occur in T . On the other
hand, if an occurrence of EðP Þ is detected, we cannot be sure that it corresponds to an occurrence
of P in T , unless we scan the encoded text from its beginning to locate all the codeword
boundaries. This means that we effectively decode the text, which is what we wanted to avoid.

No decoding is necessary, if we also keep the list I of the indices fi1; i2; . . .g of the first bit of
each codeword. Once the compressed pattern has been located, the index of its location can be
searched for in I. This would just take Oðlog jT jÞ time using binary search, but keeping the list I
might sometimes more than double the size of the compressed file. Consider, for example, a file
EðT Þ of one KB, consisting of about a thousand codewords of average length 8 bits. The cor-
responding list I would have about a thousand entries, each requiring 13 bits! It would not really
help to record, instead of the list I, the sequence L of codeword lengths, which are the differences
between the codeword starting points fi2 � i1; i3 � i2; . . .g, rather than the absolute indices; logm
bits are then necessary for each length, where m is the maximum codeword length, so that the size
of the list L would still be OðjT jÞ. For the above example, if m ¼ 16, the size of L would be 1

2
KB.

Even though the space overhead is reduced, the required time can be just as bad as for the
sequential decompression from scratch: instead of decoding the text, it is the list L that has to be
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processed from its beginning. In fact, if already one agrees to double the size of the file, a simpler
solution avoiding the necessity for binary search would be to keep a bit-string B of size identical to
that of the compressed file; a bit in a position corresponding to the beginning of a codeword
would be set to 1 in B, and all the others to 0.

A possible simple solution would be some tradeoff between recording all codeword boundaries
or none of them by preparing a small list of possible entry points into the compressed text. Choose
a parameter b and partition the compressed file into blocks of b bits; then move, when necessary,
each partition point to the closest preceding codeword boundary, and record the index of the first
bit in each such block in a list D. Once the pattern EðP Þ is found in EðT Þ at location ‘, the list D
provides the starting point of the block containing the compressed pattern, so this block can be
decompressed. The additional required space is thus OðjT j=bÞ and decoding time is reduced to
OðbÞ. No binary search within D is needed, as the required starting point is stored in the b‘=bcth
entry of D. For certain values of b, this may be a recommendable solution, with small storage
overhead and fast performance. However, the more we wish to reduce the size of D, the larger b
will be, implying longer processing. If one agrees to change the encoded file slightly, one can get
rid of the list D and force alignment on block boundaries. The total number of additional bits, less
than one codeword per block, could be kept very low.

As alternative we suggest a solution that does not alter the compressed file by exploiting the
tendency of Huffman codes to resynchronize quickly after errors (Klein & Wiseman, 2000): if the
pattern has been found at index i, jump back by some constant number of bits K and start
decoding from there. It might well be that the bit indexed i� K is not the beginning of a codeword
in EðT Þ, so that the decoding will be erroneous at the beginning. However, if K is chosen large
enough, the decoding of the last bits preceding bit i will generally be correct, regardless of possible
errors before. One can therefore decide, with a small error probability, whether to announce a
match at location i or not, depending on whether bit i is the beginning of a new codeword in the
decoding that started at i� K. The formal algorithm for finding the occurrences of pattern P in T
is given in Fig. 2. It uses the Huffman tree of the given alphabet R, and refers to its root as root. It
also uses a procedure searchðx; yÞ, which returns the smallest index i such that the string x matches
the substring of y that starts at its ith position. If no such index exists (x does not occur as
substring of y), the procedure returns 1. The decoding then starts at position i� K, or at the
beginning of the string in case K > i� 1. The procedure search can be implemented using any of
the known pattern matching algorithms––we shall refer specifically to the Karp Rabin algorithm
in Section 3.2 below––but the details have been omitted here to keep the focus on the solution of
the synchronization problem.

There are codes for which this algorithm does not work better than without the backward jump
of K bits. Indeed, suppose we start the decoding of a given compressed string at two different
points, yet according to the same Huffman tree, and suppose that at some point, these two
decodings synchronize. Let x and y denote the last codewords for the two decodings before
reaching the synchronization point. Then either x is a suffix of y or y is a suffix of x. In any case,
the underlying Huffman code cannot have the so-called suffix-property, asserting that no code-
word can be the suffix of any other, similarly to the well-known prefix-property of all Huffman
codes. Accordingly, codes having both the prefix and the suffix property have been called never-

self-synchronizing in Gilbert and Moore (1959); they are called affix codes in Fraenkel, Mor, and
Perl (1983). There are infinitely many different complete variable-length affix codes, e.g., {01, 000,



Fig. 2. The compressed matching algorithm.
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100, 110, 111, 0010, 0011, 1010, 1011}, but they are nonetheless extremely rare (Fraenkel & Klein,
1990). In particular, the code used in Fig. 1 is not affix, since the codeword for o is a suffix of the
codeword for e. Returning now to our compressed matching algorithm, if the code is an affix code
and bit i� K does not happen to be the first of a codeword, the erroneous decoding will extend to
the end of the file, for any size of K.

In practice, however, synchronization is often achieved after a small number of bits, typically
less than 100. It seems therefore that by choosing K as a few hundred should generally be enough
to avoid errors like declaring a match when in fact there is none, or failing to declare a match even
though there actually is one. We bring some experimental results below.
3. Estimating the number of errors

3.1. False matches in the pattern matching process

We shall compute an estimated number of false matches using two different models of the
probabilistic process underlying the text creation. Both models assume that the text has been
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generated by choosing repeatedly, and independently from each other, characters from R
according to their probability of occurrence p1; . . . ; pn in the text. Such an independence
assumption is of course an approximation in many cases, in particular for natural language texts
which generally exhibit many dependencies. One could even argue that due to the independence
of symbols, regular patterns should not exist and therefore there is no basis for any pattern
matching. We consider, however, also very large alphabets, the elements of which are not nec-
essarily single characters, but rather words or even phrases. Such models are frequently used in
large information retrieval systems (Witten, Moffat, & Bell, 1994).

We refer in this section to the number of false matches caused by the search function only, as if
the algorithm of Fig. 2 were used with backskip parameter K ¼ 0. The experiments below suggest
that for large enough K, the number of false matches generally decreases to zero.

The first model relies on the fact that the string EðT Þ is the result of a Huffman encoding process,
but ignores the specific probabilities p1; . . . ; pn. Rather, it uses the corresponding codeword lengths
‘1; . . . ; ‘n, respectively, and assumes that the probabilities of the occurrence of the characters in the
text are 2�‘1 ; . . . ; 2�‘n , and that the characters occur independently of each other. Such a distribution
is called dyadic. The resulting approximation may be justified by the fact that since the original and
the corresponding dyadic distributions yield the same Huffman code, they must be quite similar. A
formal definition of this similarity can be found in Longo and Galasso (1982), in which the set of
probability distributions is given a pseudo-metric, and an upper bound is derived for the distance
of any probability distribution to the dyadic distribution giving the same Huffman tree.

One can then use a theorem shown in Klein, Bookstein, and Deerwester (1989), stating that
with these assumptions, the output of Huffman decoding is indistinguishable from a random
binary string with probability of occurrence of a 1-bit being equal to 1

2
. For an infinite sequence

this would then imply that any binary pattern of length k, with kP 1, occurs with probability 2�k.
We shall use this approximation even though EðT Þ is finite and the occurrences of characters are
not really independent of each other.

To estimate the number of false matches, we proceed as follows: let m ¼ jEðPÞj be the length in
bits of the encoding of the pattern, and assume P occurs t times in T . Consider a text string T 0,
obtained from T by purging all occurrences of P . The Huffman encoding of T 0, EðT 0Þ, is a binary
sequence of length jEðT Þj � tm (assuming that there are no overlaps of suffixes of P with prefixes
of P ). Since this too is a Huffman encoded string, the probability of occurrence of EðP Þ is 2�m. No
occurrence of EðP Þ in EðT 0Þ corresponds to a true match of P in T 0, so we get as estimate for the
number of false matches
2�mðjEðT Þj � tmÞ: ð1Þ
In fact, we have used here two more approximations: by eliminating all the occurrences of P ,
the original probabilities may have been changed, which could affect the lengths of the corre-
sponding Huffman codewords. If t and m are small relative to the size of the encoded text, the
change in the probabilities might be small enough to yield the same Huffman tree (Longo &
Galasso, 1982), and even if the tree is altered, the change of the average codeword length will often
be negligible. The second approximation is that by removing a true match, a new false match
might appear that spans over the gap.

The second model takes the probabilities p1; . . . ; pn into account and assumes a complete prefix
code, though not necessarily one derived from Huffman’s algorithm. For convenience, we shall
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still use the terminology of Huffman codes, but the analysis is also valid for any other complete
prefix code with associated probabilities. The following notations will be used below. Let T
denote the Huffman tree corresponding to a given Huffman code. The elements which are encoded
appear with probabilities p1; . . . ; pn in the text, and the lengths of the corresponding Huffman
codewords are ‘1; . . . ; ‘n, respectively. We shall also use the notation py for the probability of the
element corresponding to the leaf y. Denote byL the set of the leaves ofT, and byI the set of its
internal nodes. For each x 2 I, we define Tx as the subtree of T rooted at x, and we denote by
Lx ¼ L \Tx the set of its leaves. The internal nodes I correspond to the possible positions
within a codeword at which a match of the pattern P can be found. In particular, the root r of the
tree, which belongs to I, corresponds to the special case where position i, returned by the pro-
cedure search in the algorithm, is the beginning of a codeword, i.e., a true match has been found.

Consider the fact of having a possible match in a certain position as if it were generated by the
following random process: the compressed text consisting of a given sequence of zeros and ones,
we pick randomly bit positions which shall act as the starting position of the matches. In this
sense, we can speak about the probability of having a possible match in a certain position.

We thus assume that the position i returned by the procedure search occurs at random in any
possible location, that is, at any internal node of T. For a given internal node x 2 I, the
probability P ðxÞ of the position corresponding to x being returned by the algorithm will be
proportional to pi‘i, and not just to pi, since we deal with a random process on the compressed
text and not on the original one. Each leaf of the Huffman tree is associated with a probability pi,
and the probability associated with an internal node y is the sum of the probabilities associated
with the two children of y. Thus, when adding the probabilities associated with all the internal
nodes, we get W ¼

Pn
i¼1 pi‘i, the weighted average codeword length, and the probability PðxÞ is

given by
P ðxÞ ¼
P

y2Lx
py

W
:

This is indeed a probability distribution, as
P

x2I P ðxÞ ¼ 1.
Similarly, for a leaf y 2 L, the probability of seeing the codeword corresponding to y in the

compressed text, which we shall denote by PðyÞ to differentiate it from the above probabilities
defined for internal nodes, will be proportional to pi‘i, rather than just to pi, so that this prob-
ability will be
PðyÞ ¼ py‘y
W

and again
P

y2L PðyÞ ¼ 1.
As an example for these definitions, consider again the Huffman code mentioned in Section 1

for the characters T, N, A, O, W, E, B and C, and suppose they occur with probabilities 0.28, 0.19,
0.12, 0.11, 0.11, 0.06, 0.05 and 0.08, respectively. The corresponding Huffman tree is depicted in
Fig. 3. The probability associated with any node v of L [I appears underneath v, the proba-
bilities P ðxÞ for x 2 I appear in grey ellipses to the right of the internal (black) nodes, and the
probabilities PðyÞ for y 2 L appear in white boxes to the left of the leaves.

Let F denote the event of getting a false match at a given position. We evaluate the probability
P ðFÞ by conditioning on the position x 2 I returned by the algorithm:
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Fig. 3. Probabilities PðxÞ and PðyÞ for the nodes of the example Huffman tree.
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P ðFÞ ¼
X
x2I

P ðFjalgorithm returnedxÞP ðxÞ:
If x is the root, P ðFj algorithm returned xÞ ¼ 0, because of the prefix property of the Huffman
codes. If x is some other internal node, we have to consider several possibilities, which are
schematically displayed in Fig. 4.

Since we deal with a complete code, any binary sequence such as EðPÞ we try to locate, can be
decoded (i.e., mapped into a sequence of codewords), even if the traversal of the tree T does not
start at its root. One possibility is that EðP Þ is a substring of a codeword, without being its prefix
or suffix. This corresponds to a path in T starting at an internal node x and ending at another
internal node y (Fig. 4(a)). Another possibility is that EðPÞ is a suffix of a codeword (Fig. 4(b)), or
it could be such a suffix followed by several other codewords. The most general case is given in
Fig. 4(c): EðPÞ consists of the suffix of some codeword, followed by (zero or more) codewords and
ending with the proper prefix of some codeword.

Denote by yðx; 1Þ; . . . ; yðx; t � 1Þ the sequence of leaves encountered when traversing the treeT,
starting at the internal node x, and proceeding to left or right children as directed by the binary
string EðP Þ. Let y0ðx; tÞ be the internal node at which this traversal finishes. The case of Fig. 4(a)
corresponds to t ¼ 1, and if the decoding happens to finish at the end of a codeword (as in the case
x
x

x

y
y

y

(a) (b) (c)

Fig. 4. Schematic view of Huffman tree traversal with EðP Þ.
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of Fig. 4(b)), we define y 0ðx; tÞ as being the root. For each of the leaves yðx; iÞ, the probability of
seeing it in the encoded text is Pðyðx; iÞÞ, and the probability of seeing the prefix corresponding to
y0ðx; tÞ is the sum of the probabilities of the leaves in the subtree rooted by y 0ðx; tÞ. For the special
case y 0ðx; tÞ¼ root, this sum is 1. Assuming independence of the events, we get
P ðF j algorithm returned xÞ ¼
Yt�1

i¼1

Pðyðx; iÞÞ
X

j2Ly0ðx;tÞ

PðjÞ

0
@

1
A:
We can therefore derive the estimated number of false matches jEðT ÞjPðFÞ as
jEðT Þj
X
x2I

Yt�1

i¼1

pyðx;iÞ‘yðx;iÞ
W

X
j2Ly0ðx;tÞ

pj‘j
W

0
@

1
A

0
@

1
A

P
z2Lx

pz
W

� 	
: ð2Þ
In any case, we see that the probability of a false match decreases sharply when the length
m ¼ jEðP Þj increases. We bring below experimental results comparing the formulas with empiric
data. It should be noted that one can argue that similarly, the expected number of true matches
can be evaluated; but true matches of EðPÞ in EðT Þ correspond to matches of P in T , and these are
given since P and T are fixed. There is therefore no probabilistic scenario on which calculating this
probability could be based. For the false matches, however, our assumption of random occur-
rence seems reasonable, yielding the above analysis.

3.2. False matches resulting from probabilistic pattern matching

We stated above that if x, the node of the Huffman tree corresponding to the position returned
by the algorithm, is the root, then PðFj algorithm returned xÞ ¼ 0, i.e., there cannot be a false
match, because the encoded pattern has been found at a codeword boundary and a false match
would imply a violation of the prefix property. However, this assumes that we can assure that if
the pattern matching algorithm declares a match at position i, there is indeed a match at that
position. This is true for deterministic algorithms, but not necessarily for probabilistic ones. For
instance, Karp and Rabin’s (1987) algorithm searches for EðP Þ in EðT Þ by scanning substrings Zi

of EðT Þ, each of the same length m as the encoded pattern, and instead of comparing Zi with EðP Þ,
it compares Zi mod Q with EðP Þ mod Q, where Q is a large randomly chosen prime number. If the
moduli are equal, a match is declared, even though obviously there are many numbers a and b
such that a 6¼ b but a mod Q ¼ b mod Q. Two probabilities have thus to be dealt with:

1. the probability R1 that the match declared by the probabilistic pattern matcher might be an
erroneous one;

2. the probability R2 that even if there is a true match of EðPÞ at the declared position within EðT Þ,
it might not correspond to a match of P in T .

The second probability R2 has been evaluated in the previous section. As to R1, note that one
can easily turn the probabilistic algorithm into a deterministic one, by checking at the declared
position if it indeed holds a match. Moreover, such a check is generally not really needed. The
probability to get a false match by the Karp Rabin algorithm is bounded by mn=2q, where m and n
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are the sizes of the pattern and the scanned text, respectively, and q ¼ dlog2 Qe is the number of
bits of the prime number Q. One can therefore choose q large enough (since m and n are given) to
make this probability negligible relative to R2. Summarizing, we may safely ignore R1: if the
pattern EðP Þ is shorter than q, then working modulo Q is in fact a real comparison and not a
probabilistic one, so R1 ¼ 0; if on the other hand, m is larger than q, then R2 will probably be
extremely small.

3.3. Erroneous decisions of the algorithm

When running the pattern matching algorithm with the backskips, a correct performance
identifies the true and false matches for each of the occurrences of EðPÞ in EðT Þ. These matches
are called below true positives and negatives. The algorithm can, however, also fail in two quite
different ways:

1. It could announce a match, while in reality the occurrence of EðPÞ in EðT Þ does not correspond
to an occurrence of P in T (false positives);

2. It could fail to announce a match, while in reality the occurrence of EðP Þ in EðT Þ does corre-
spond to an occurrence of P in T (false negatives).

In an analogy to information retrieval literature, we wish to retrieve all, and only, occurrences
of P in T . The first type of error reduces then precision (the ratio of relevant retrieved items to all
retrieved items), since it retrieves also elements which are not occurrences of P in T ; the second
type of error reduces recall (the ratio of relevant retrieved items to all relevant items), since it does
not retrieve all occurrences of P in T . The following table summarizes the four possibilities for
a given occurrence of EðP Þ in EðT Þ: the columns correspond to the actual situation (match or
non-match of P in T ), the rows to what is announced by the algorithm.

If the algorithm does not skip backwards (K ¼ 0), every occurrence of EðPÞ in EðT Þ would be
declared as a match, so there are no false negatives, but possibly many false positives. For small
values of K, it is probable that synchronization with the true decoding is not achieved before the K
bits are used up, which could imply a large number of false decisions; but by increasing K, the
probability of synchronization, regardless of the starting point, increases, and the number of false
positives or negatives will decrease.

actual match actual non-match

declare match True positives False positives
declare non-match False negatives True negatives
4. Experimental results

The algorithm was tested on several files of different nature. The first one was paper1 from the
Calgary corpus, an English text with editing instructions. The second was a DNA file (of the



S.T. Klein, D. Shapira / Information Processing and Management 41 (2005) 829–841 839
tobacco chloroplast genome), including also blanks and newlines for clarity; the alphabet thus
consisted of six characters. Finally, to cancel the bias introduced by the independence assumption,
a new text was created based on the distribution of characters in paper1, but with each character
generated independently from the others.

The first set of tests was performed on paper1, searching for arbitrary patterns which were
chosen randomly within the file. We used a canonical Huffman encoding and considered patterns
of lengths 3–50, four of each. The compressed forms of these 192 patterns occurred in total 1077
times in the compressed text. Of these occurrences, 1040 corresponded to appearances of P in T ,
and 37 were false matches, all of which occurred for the shorter patterns up to length 5. For
example, when searching for P ¼fro, for which EðP Þ¼ 110010-10001-0011, the pattern
P 0 ¼ k t h was retrieved (t denoting a blank), for which EðP 0Þ ¼ 111100101-000-10011, including
EðP Þ as suffix.

The algorithm was then applied several times, each time with a different size of the backward
skip, which was chosen as an integral number of bytes. The first column of Table 1 gives the size K
of the backward skip in bits, the following columns list the number of occurrences of true and
false positives and negatives.

Obviously, true positives and false negatives add up to the number of actual matches, while true
negatives and false positives add up to the number of non-matches. One sees that false positives
(wrongly announced matches) are rare, independently of the algorithm, and that already for small
backskips (less than 12 bytes for all our examples), both types of errors may be corrected.

Table 2 brings some example patterns P , comparing for each the actual number of wrong
matches (occurrences of EðP Þ in EðT Þ which do not correspond to occurrences of P in T ) with the
expected number on the basis of formulas (1) and (2).

We see that there is generally a good fit, with no formula consistently outperforming the other.
Interestingly, on the random file, the number of wrong matches was much higher than the number
of true matches for many of the examples.
Table 1

Number of matches and false matches as a function of backward skip

K in bits True positives True negatives False positives False negatives

8 415 35 2 625

16 670 33 4 370

24 825 36 1 215

32 917 35 2 123

40 974 35 2 66

48 1013 37 0 27

56 1018 36 1 22

64 1036 37 0 4

72 1038 36 1 2

80 1036 36 1 4

88 1039 37 0 1

96 1040 37 0 0

� � �
Start of file 1040 37 0 0



Table 2

Empiric and expected number of false matches

File Pattern jEðP Þj # Wrong matches Estimate (1) Estimate (2)

paper1 in 8 621 1018 624

cl 10 186 260 192

ies 13 36 32 33

lose 18 0 1 1

Incre 26 0 0.004 0.004

dna tcg 8 1783 1797 2483

atct 9 1205 909 1094

aaagta 14 35 29 34

gatactc 17 5 4 4

random et 8 858 1030 603

ut 9 426 518 547

fto 13 31 32 14

eo, e 19 0 0.5 0.6
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5. Concluding remarks

Searching for a pattern directly in a Huffman encoded file seems to be an easy task because of
the static nature of the compression scheme. There are however synchronization problems, which
we tried to overcome in this work. If the pattern is long enough, the probability of finding a wrong
match is often very low, independently of the algorithm. For the other patterns, a proper choice
of the backskip parameter lets us control the error.
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