A copy of this work was available on the public web and has been preserved in the Wayback Machine. The capture dates from 2017; you can also visit the original URL.
The file type is application/pdf
.
Tracking Opinion over Time: A method for Reducing Sampling Error
1999
Public Opinion Quarterly
Across a wide range of applications, the Kalman filtering and smoothing algorithm provides survey researchers with a single, systematic technique by which to generate four kinds of useful information. First, it enables survey analysts to differentiate between random sampling error and true opinion change. Second, Kalman smoothing provides a means by which to accumulate information across surveys, greatly increasing the precision with which public opinion is gauged at any given point in time.
doi:10.1086/297710
fatcat:jogng3mbcjeydjxsng6g66ipiy