Artificial Intelligence (AI) and Cardiovascular Diseases: An Unexpected Alliance

Silvia Romiti, Mattia Vinciguerra, Wael Saade, Iñaki Anso Cortajarena, Ernesto Greco
<span title="2020-06-27">2020</span> <i title="Hindawi Limited"> <a target="_blank" rel="noopener" href="https://fatcat.wiki/container/ajybonrkpbhz3a7yodbyhrxa3e" style="color: black;">Cardiology Research and Practice</a> </i> &nbsp;
Cardiovascular disease (CVD), despite the significant advances in the diagnosis and treatments, still represents the leading cause of morbidity and mortality worldwide. In order to improve and optimize CVD outcomes, artificial intelligence techniques have the potential to radically change the way we practice cardiology, especially in imaging, offering us novel tools to interpret data and make clinical decisions. AI techniques such as machine learning and deep learning can also improve medical
more &raquo; ... owledge due to the increase of the volume and complexity of the data, unlocking clinically relevant information. Likewise, the use of emerging communication and information technologies is becoming pivotal to create a pervasive healthcare service through which elderly and chronic disease patients can receive medical care at their home, reducing hospitalizations and improving quality of life. The aim of this review is to describe the contemporary state of artificial intelligence and digital health applied to cardiovascular medicine as well as to provide physicians with their potential not only in cardiac imaging but most of all in clinical practice.
<span class="external-identifiers"> <a target="_blank" rel="external noopener noreferrer" href="https://doi.org/10.1155/2020/4972346">doi:10.1155/2020/4972346</a> <a target="_blank" rel="external noopener" href="https://www.ncbi.nlm.nih.gov/pubmed/32676206">pmid:32676206</a> <a target="_blank" rel="external noopener" href="https://pubmed.ncbi.nlm.nih.gov/PMC7336209/">pmcid:PMC7336209</a> <a target="_blank" rel="external noopener" href="https://fatcat.wiki/release/bsas334w75co7a33avqkmrcp7m">fatcat:bsas334w75co7a33avqkmrcp7m</a> </span>
<a target="_blank" rel="noopener" href="https://web.archive.org/web/20200707191958/http://downloads.hindawi.com/journals/crp/2020/4972346.pdf" title="fulltext PDF download" data-goatcounter-click="serp-fulltext" data-goatcounter-title="serp-fulltext"> <button class="ui simple right pointing dropdown compact black labeled icon button serp-button"> <i class="icon ia-icon"></i> Web Archive [PDF] <div class="menu fulltext-thumbnail"> <img src="https://blobs.fatcat.wiki/thumbnail/pdf/e2/e9/e2e95ae2fe9bb878fffa0285379286efd5bc38f1.180px.jpg" alt="fulltext thumbnail" loading="lazy"> </div> </button> </a> <a target="_blank" rel="external noopener noreferrer" href="https://doi.org/10.1155/2020/4972346"> <button class="ui left aligned compact blue labeled icon button serp-button"> <i class="unlock alternate icon" style="background-color: #fb971f;"></i> hindawi.com </button> </a> <a target="_blank" rel="external noopener" href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7336209" title="pubmed link"> <button class="ui compact blue labeled icon button serp-button"> <i class="file alternate outline icon"></i> pubmed.gov </button> </a>