A copy of this work was available on the public web and has been preserved in the Wayback Machine. The capture dates from 2022; you can also visit the original URL.
The file type is application/pdf
.
Deep Latent-Variable Models for Text Generation
[article]
2022
arXiv
pre-print
Text generation aims to produce human-like natural language output for down-stream tasks. It covers a wide range of applications like machine translation, document summarization, dialogue generation and so on. Recently deep neural network-based end-to-end architectures have been widely adopted. The end-to-end approach conflates all sub-modules, which used to be designed by complex handcrafted rules, into a holistic encode-decode architecture. Given enough training data, it is able to achieve
arXiv:2203.02055v1
fatcat:sq3upxl7xvfnhigoc7apszomwu