Improving Winter Wheat Yield Forecasting Based on Multi-Source Data and Machine Learning

Yuexia Sun, Shuai Zhang, Fulu Tao, Rashad Aboelenein, Alia Amer
2022 Agriculture  
To meet the challenges of climate change, population growth, and an increasing food demand, an accurate, timely and dynamic yield estimation of regional and global crop yield is critical to food trade and policy-making. In this study, a machine learning method (Random Forest, RF) was used to estimate winter wheat yield in China from 2014 to 2018 by integrating satellite data, climate data, and geographic information. The results show that the yield estimation accuracy of RF is higher than that
more » ... f the multiple linear regression method. The yield estimation accuracy can be significantly improved by using climate data and geographic information. According to the model results, the estimation accuracy of winter wheat yield increases dramatically and then flattens out over months; it approached the maximum in March, with R2 and RMSE reaching 0.87 and 488.59 kg/ha, respectively; this model can achieve a better yield forecasting at a large scale two months in advance.
doi:10.3390/agriculture12050571 fatcat:jet7ve5tirco5giv7uldkdycje