Inaccuracies in Phytic Acid Measurement: Implications for Mineral Biofortification and Bioavailability

Pushparajah Thavarajah, Dil Thavarajah
2014 American Journal of Plant Sciences  
Biofortification of commonly eaten staple food crops with essential mineral micronutrients is a potential sustainable solution to global micronutrient malnutrition. Because phytic acid (PA; 1,2,3,4,5,6-hexakis myo-inositol) reduces mineral micronutrient bioavailability, reduction of PA levels could increase the bioavailability of biofortified iron (Fe), zinc (Zn), calcium (Ca), and magnesium (Mg). PA is viewed as an anti-nutrient, yet PA and other inositol phosphates have also demonstrated
more » ... ive health benefits. Phytic acid analysis in the agricultural, food, and nutritional sciences is typically carried out by colorimetry and chromatographic techniques. In addition, advanced techniques such as nuclear magnetic resonance and synchrotron X-ray absorption spectroscopy have also been used in phytic acid analysis. The colorimetric analysis may overestimate PA levels and synchrotron X-ray absorption techniques may not detect very low levels of inositol phosphates. This short communication discusses the advantages and disadvantages of each widely used phytic acid analysis method, and suggests high performance anion exchange (HPAE) chromatography with conductivity detection (CD) based analysis can achieve greater accuracy for the identification and quantification of inositol phosphates. Accurate characterization and quantification of PA and inositol phosphates will inform PA reduction and biofortification efforts, allowing retention of the benefits of non-phytic inositol phosphates for both plants and humans.
doi:10.4236/ajps.2014.51005 fatcat:mnbbahtfk5ha7kjno6kh65jmiq