Equivalence principles, spacetime structure and the cosmic connection

Wei-Tou Ni
2016 International Journal of Modern Physics D  
After reviewing the meaning of various equivalence principles and the structure of electrodynamics, we give a fairly detailed account of the construction of the light cone and a core metric from the equivalence principle for the photon (no birefringence, no polarization rotation and no amplification/attenuation in propagation) in the framework of linear electrodynamics using cosmic connections/observations as empirical support. The cosmic nonbirefringent propagation of photons independent of
more » ... rgy and polarization verifies the Galileo Equivalence Principle [Universality of Propagation] for photons/electromagnetic wave packets in spacetime. This nonbirefringence constrains the spacetime constitutive tensor to high precision to a core metric form with an axion degree and a dilaton degree of freedom. Thus comes the metric with axion and dilation. Constraints on axion and dilaton from astrophysical/cosmic propagation are reviewed. E\"otv\"os-type experiments, Hughes-Drever-type experiments, redshift experiments then constrain and tie this core metric to agree with the matter metric, and hence a unique physical metric and universality of metrology. We summarize these experiments and review how the Galileo equivalence principle constrains the Einstein Equivalence Principle (EEP) theoretically. In local physics this physical metric gives the Lorentz/Poincar\'e covariance. Understanding that the metric and EEP come from the vacuum as a medium of electrodynamics in the linear regime, efforts to actively look for potential effects beyond this linear scheme are warranted.
doi:10.1142/s0218271816300020 fatcat:2k654ot2yjab5kcuik4x4dbzxq