Through-Thickness Microstructure and Strain Distribution in Steel Sheets Rolled in a Large-Diameter Rolling Process

Inoue, Qiu, Ueji
2020 Metals  
The rolling condition for fabricating a low-carbon niobium-microalloyed steel sheet with an ultrafine-grained (UFG) structure was examined through rolling experiments and finite element analysis. A large-diameter rolling process was proposed to create a UFG structure. The rolling was conducted near the transformation point, Ar3, from austenite to ferrite. The Ar3 was measured at the surface and the center of the sheet. First, the through-thickness microstructure and equivalent strain
more » ... n in a 1-pass rolled sheet 2.0 mm thick were examined. In the rolling experiments, the embedded pin method was employed to understand through-thickness deformation. The magnitude of the equivalent strain to obtain a UFG structure was estimated to be 2.0. Based on these results, the fabrication of a 2 mm UFG steel sheet by 3-pass rolling for an initial thickness of 14.5 mm was attempted by the proposed large-diameter rolling process.
doi:10.3390/met10010091 fatcat:mxrx5h44eraa5p44inb3u3kbm4