An experimental study of cold helium dispersion in air

M. Chorowski
2002 AIP Conference Proceedings  
The Large Hadron Collider (LHC) presently under construction at CERN, will contain about 100 tons of helium mostly located in the underground tunnel and in caverns. Potential failure modes of the accelerator, which may be followed by helium discharge to the tunnel, have been identified and the corresponding helium flows calculated. To verify the analytical calculations of helium dispersion in the tunnel, a dedicated test set-up has been built. It represents a section of the LHC tunnel at a
more » ... 1:13 and is equipped with a controllable helium relief system enabling the simulation of different scenarios of the LHC cryogenic system failures. Corresponding patterns of cold helium dispersion in air have been observed and analysed with respect to oxygen deficiency hazard. We report on the test set-up and the measurement results, which have been scaled to real LHC conditions. ABTRACT The Large Hadron Collider (LHC) presently under construction at CERN, will contain about 100 tons of helium mostly located in the underground tunnel and in caverns. Potential failure modes of the accelerator, which may be followed by helium discharge to the tunnel, have been identified and the corresponding helium flows calculated. To verify the analytical calculations of helium dispersion in the tunnel, a dedicated test set-up has been built. It represents a section of the LHC tunnel at a scale 1:13 and is equipped with a controllable helium relief system enabling the simulation of different scenarios of the LHC cryogenic system failures. Corresponding patterns of cold helium dispersion in air have been observed and analysed with respect to oxygen deficiency hazard. We report on the test set-up and the measurement results, which have been scaled to real LHC conditions.
doi:10.1063/1.1472177 fatcat:n72xurirvvd47czho5s74sqcgi