Reduced basis method for the rapid and reliable solution of partial differential equations [chapter]

Yvon Maday
Proceedings of the International Congress of Mathematicians Madrid, August 22–30, 2006  
Numerical approximation of the solution of partial differential equations plays an important role in many areas such as engineering, mechanics, physics, chemistry, biology -for computer-aided design-analysis, computer-aided decision-making or simply better understanding. The fidelity of the simulations with respect to reality is achieved through the combined efforts to derive: (i) better models, (ii) faster numerical algorithm, (iii) more accurate discretization methods and (iv) improved large
more » ... cale computing resources. In many situations, including optimization and control, the same model, depending on a parameter that is changing, has to be simulated over and over, multiplying by a large factor (up to 100 or 1000) the solution procedure cost of one single simulation. The reduced basis method allows to define a surrogate solution procedure, that, thanks to the complementary design of fidelity certificates on outputs, allows to speed up the computations by two to three orders of magnitude while maintaining a sufficient accuracy. We present here the basics of this approach for linear and non linear elliptic and parabolic PDE's.
doi:10.4171/022-3/60 fatcat:dlzwwyyk5be63b6luarfyq7osu