A copy of this work was available on the public web and has been preserved in the Wayback Machine. The capture dates from 2021; you can also visit the original URL.
The file type is application/pdf
.
Unsupervised Outlier Detection via Transformation Invariant Autoencoder
2021
IEEE Access
Autoencoder based methods are the majority of deep unsupervised outlier detection methods. However, these methods perform not well on complex image datasets and suffer from the noise introduced by outliers, especially when the outlier ratio is high. In this paper, we propose a framework named Transformation Invariant AutoEncoder (TIAE), which can achieve stable and high performance on unsupervised outlier detection. First, instead of using a conventional autoencoder, we propose a transformation
doi:10.1109/access.2021.3065838
fatcat:jisbs3qdefhxlb2t2colv7bom4