A copy of this work was available on the public web and has been preserved in the Wayback Machine. The capture dates from 2017; you can also visit the original URL.
The file type is application/pdf
.
Note on Generating All Subsets of a Finite Set with Disjoint Unions
2009
Electronic Journal of Combinatorics
We call a family ${\cal G} \subset {\Bbb P}[n]$ a $k$-generator of ${\Bbb P}[n]$ if every $x \subset [n]$ can be expressed as a union of at most $k$ disjoint sets in ${\cal G}$. Frein, Lévêque and Sebő conjectured that for any $n \geq k$, such a family must be at least as large as the $k$-generator obtained by taking a partition of $[n]$ into classes of sizes as equal as possible, and taking the union of the power-sets of the classes. We generalize a theorem of Alon and Frankl in order to show
doi:10.37236/254
fatcat:vb7ngny5ufc6nafupih4esomqa