High temporal resolution hydrometeorological data collected in the tropical Cordillera Blanca, Peru (2004–2020) [post]

Emilio I. Mateo, Bryan G. Mark, Robert Å. Hellström, Michel Baraer, Jeffrey M. McKenzie, Thomas Condom, Alejo Cochachín Rapre, Gilber Gonzales, Joe Quijano Gómez, Rolando Cesai Crúz Encarnación
2021 unpublished
Abstract. This article provides a comprehensive hydrometeorological dataset collected over the past two decades throughout the Cordillera Blanca, Peru. The data recording sites, located in the upper portion of the Rio Santa valley, also known as the Callejon de Huaylas, span an elevation range of 3738–4750 m a.s.l. As many historical hydrological stations measuring daily discharge across the region became defunct after their installation in the 1950s, there was a need for new stations to be
more » ... alled and an opportunity to increase the temporal resolution of the streamflow observations. Through inter-institutional collaboration the hydrometeorological network described in this paper was deployed with goals to evaluate how progressive glacier mass loss was impacting stream hydrology, and to better understand the local manifestation of climate change over diurnal to seasonal and interannual time scales. The four automatic weather stations supply detailed meteorological observations, and are situated in a variety of mountain landscapes, with one on a high-mountain pass, another next to a glacial lake, and two in glacially carved valleys. Four additional temperature and relative humidity loggers complement the weather stations within the Llanganuco valley by providing these data across an elevation gradient. The six streamflow gauges are located in tributaries to the Rio Santa and collect high temporal resolution runoff data. The datasets presented here are available freely from https://doi.org/10.4211/hs.059794371790407abd749576df8fd121 (Mateo et al., 2021). Combined, the hydrological and meteorological data collected throughout the Cordillera Blanca enable detailed research of atmospheric and hydrological processes in tropical high-mountain terrain.
doi:10.5194/essd-2021-215 fatcat:fkyffvhaa5c6zja7ksspmmhw4a