A copy of this work was available on the public web and has been preserved in the Wayback Machine. The capture dates from 2020; you can also visit the original URL.
The file type is `application/pdf`

.

##
###
A combinatorial proof of the Degree Theorem in Auter space
[article]

2014
*
arXiv
*
pre-print

We use discrete Morse theory to give a new proof of the Degree Theorem in Auter space A_n. There is a filtration of A_n into subspaces A_n,k using the degree of a graph, and the Degree Theorem says that each A_n,k is (k-1)-connected. This result is useful, for example to calculate stability bounds for the homology of Aut(F_n). The standard proof of the Degree Theorem is global in nature. Here we give a proof that only uses local considerations, and lends itself more readily to generalization.

arXiv:0907.4642v4
fatcat:apuvfviuevfbxb4thf4ojuajpe