A copy of this work was available on the public web and has been preserved in the Wayback Machine. The capture dates from 2020; you can also visit the original URL.
The file type is application/pdf
.
Aspect Based Sentiment Classification Using Interactive Gated Convolutional Network
2020
IEEE Access
Aspect-based sentiment classification aims to detect the sentiment polarity of a target in a given context. Most previous approaches use long short-term memory (LSTM) and attention mechanisms to predict the sentiment polarity of targets, which are usually complex and need more training time. Some previous approaches are based on convolutional neural networks (CNN) and gating mechanisms, which are much simpler, efficient and takes lesser convergence time than LSTM due to parallelized
doi:10.1109/access.2020.2970030
fatcat:5jnowvqepvezvmtwq3uqtwodxq