PRC2 and EHMT1 regulate H3K27me2 and H3K27me3 establishment across the zygote genome

Tie-Gang Meng, Qian Zhou, Xue-Shan Ma, Xiao-Yu Liu, Qing-Ren Meng, Xian-Ju Huang, Hong-Lin Liu, Wen-Long Lei, Zheng-Hui Zhao, Ying-Chun Ouyang, Yi Hou, Heide Schatten (+4 others)
2020 Nature Communications  
AbstractThe formation of zygote is the beginning of mammalian life, and dynamic epigenetic modifications are essential for mammalian normal development. H3K27 di-methylation (H3K27me2) and H3K27 tri-methylation (H3K27me3) are marks of facultative heterochromatin which maintains transcriptional repression established during early development in many eukaryotes. However, the mechanism underlying establishment and regulation of epigenetic asymmetry in the zygote remains obscure. Here we show that
more » ... Here we show that maternal EZH2 is required for the establishment of H3K27me3 in mouse zygotes. However, combined immunostaining with ULI-NChIP-seq (ultra-low-input micrococcal nuclease-based native ChIP-seq) shows that EZH1 could partially safeguard the role of EZH2 in the formation of H3K27me2. Meanwhile, we identify that EHMT1 is involved in the establishment of H3K27me2, and that H3K27me2 might be an essential prerequisite for the following de novo H3K27me3 modification on the male pronucleus. In this work, we clarify the establishment and regulatory mechanisms of H3K27me2 and H3K27me3 in mouse zygotes.
doi:10.1038/s41467-020-20242-9 pmid:33311485 fatcat:hto4v2wy55fopiiqvcl626ilqu