A copy of this work was available on the public web and has been preserved in the Wayback Machine. The capture dates from 2019; you can also visit the original URL.
The file type is application/pdf
.
Kinetic Continuous Opinion Dynamics Model on Two Types of Archimedean Lattices
2017
Frontiers in Physics
Here, the critical properties of kinetic continuous opinion dynamics model are studied on (4, 6, 12) and (4, 8 2 ) Archimedean lattices. We obtain p c and the critical exponents from Monte Carlo simulations and finite size scaling. We found out the values of the critical points and Binder cumulant that are p c = 0.086(3) and O * 4 = 0.59(2) for (4, 6, 12); and p c = 0.109(3) and O * 4 = 0.606( 5 ) for (4, 8 2 ) lattices and also the exponent ratios β/ν, γ /ν, and 1/ν are, respectively: 0.23(7),
doi:10.3389/fphy.2017.00047
fatcat:cuoauqcbsbah7fgvpim7qyq56y