MIdASv0.2.1 – MultI-scale bias AdjuStment

Peter Berg, Thomas Bosshard, Wei Yang, Klaus Zimmermann
2022 Geoscientific Model Development  
Abstract. Bias adjustment is the practice of statistically transforming climate model data in order to reduce systematic deviations from a reference data set, typically some sort of observations. There are numerous proposed methodologies to perform the adjustments – ranging from simple scaling approaches to advanced multi-variate distribution-based mapping. In practice, the actual bias adjustment method is a small step in the application, and most of the processing handles reading, writing, and
more » ... linking different data sets. These practical processing steps become especially heavy with increasing model domain size and resolution in both time and space. Here, we present a new implementation platform for bias adjustment, which we call MIdAS (MultI-scale bias AdjuStment). MIdAS is a modern code implementation that supports features such as modern Python libraries that allow efficient processing of large data sets at computing clusters, state-of-the-art bias adjustment methods based on quantile mapping, and "day-of-year-based" adjustments to avoid artificial discontinuities, and it also introduces cascade adjustment in time and space. The MIdAS platform has been set up such that it will continually support development of methods aimed towards higher-resolution climate model data, explicitly targeting cases where there is a scale mismatch between data sets. The paper presents a comparison of different quantile-mapping-based bias adjustment methods and the subsequently chosen code implementation for MIdAS. A current recommended setup of the MIdAS bias adjustment is presented and evaluated in a pseudo-reference setup for regions around the world. Special focus is put on preservation of trends in future climate projections, and it is shown that the cascade adjustments perform better than the standard quantile mapping implementations and are often similar to methods that explicitly preserve trends.
doi:10.5194/gmd-15-6165-2022 fatcat:fbvswkclqnhivesc4pbnebtv5y