An adaptive discretization of incompressible flow using a multitude of moving Cartesian grids

R. Elliot English, Linhai Qiu, Yue Yu, Ronald Fedkiw
2013 Journal of Computational Physics  
We present a novel method for discretizing the incompressible Navier-Stokes equations on a multitude of moving and overlapping Cartesian grids each with an independently chosen cell size to address adaptivity. Advection is handled with first and second order accurate semi-Lagrangian schemes in order to alleviate any time step restriction associated with small grid cell sizes. Likewise, an implicit temporal discretization is used for the parabolic terms including Navier-Stokes viscosity which we
more » ... address separately through the development of a method for solving the heat diffusion equations. The most intricate aspect of any such discretization is the method used in order to solve the elliptic equation for the Navier-Stokes pressure or that resulting from the temporal discretization of parabolic terms. We address this by first removing any degrees of freedom which duplicately cover spatial regions due to overlapping grids, and then providing a discretization for the remaining degrees of freedom adjacent to these regions. We observe that a robust second order accurate symmetric positive definite readily preconditioned discretization can be obtained by constructing a local Voronoi region on the fly for each degree of freedom in question in order to obtain both its stencil (logically connected neighbors) and stencil weights. Internal curved boundaries such as at solid interfaces are handled using a simple immersed boundary approach which is directly applied to the Voronoi mesh in both the viscosity and pressure solves. We independently demonstrate each aspect of our approach on test problems in order to show efficacy and convergence before finally addressing a number of common test cases for incompressible flow with stationary and moving solid bodies. *
doi:10.1016/ fatcat:y76cq2c7wrghnazo7vigdb54um