Logic-guided Semantic Representation Learning for Zero-Shot Relation Classification [article]

Juan Li, Ruoxu Wang, Ningyu Zhang, Wen Zhang, Fan Yang, Huajun Chen
2020 arXiv   pre-print
Relation classification aims to extract semantic relations between entity pairs from the sentences. However, most existing methods can only identify seen relation classes that occurred during training. To recognize unseen relations at test time, we explore the problem of zero-shot relation classification. Previous work regards the problem as reading comprehension or textual entailment, which have to rely on artificial descriptive information to improve the understandability of relation types.
more » ... us, rich semantic knowledge of the relation labels is ignored. In this paper, we propose a novel logic-guided semantic representation learning model for zero-shot relation classification. Our approach builds connections between seen and unseen relations via implicit and explicit semantic representations with knowledge graph embeddings and logic rules. Extensive experimental results demonstrate that our method can generalize to unseen relation types and achieve promising improvements.
arXiv:2010.16068v1 fatcat:32mls4yobvdr5lzyy3wd4o2ojq