On isolated singularities of Kirchhoff equations

Huyuan Chen, Mouhamed Moustapha Fall, Binling Zhang
2020 Advances in Nonlinear Analysis  
AbstractIn this note, we study isolated singular positive solutions of Kirchhoff equation$$\begin{array}{} \displaystyle M_\theta(u)(-{\it\Delta}) u =u^p \quad{\rm in}\quad {\it\Omega}\setminus \{0\},\qquad u=0\quad {\rm on}\quad \partial {\it\Omega}, \end{array}$$where p > 1, θ ∈ ℝ, Mθ(u) = θ + ∫Ω |∇ u| dx, Ω is a bounded smooth domain containing the origin in ℝN with N ≥ 2.In the subcritical case: 1 < p < $\begin{array}{} \displaystyle \frac{N}{N-2} \end{array}$ if N ≥ 3, 1 < p < + ∞ if N =
more » ... we employee the Schauder fixed point theorem to derive a sequence of positive isolated singular solutions for the above equation such that Mθ(u) > 0. To estimate Mθ(u), we make use of the rearrangement argument. Furthermore, we obtain a sequence of isolated singular solutions such that Mθ(u) < 0, by analyzing relationship between the parameter λ and the unique solution uλ of$$\begin{array}{} \displaystyle -{\it\Delta} u+\lambda u^p=k\delta_0\quad{\rm in}\quad B_1(0),\qquad u=0\quad {\rm on}\quad \partial B_1(0). \end{array}$$In the supercritical case: $\begin{array}{} \displaystyle \frac{N}{N-2} \end{array}$ ≤ p < $\begin{array}{} \displaystyle \frac{N+2}{N-2} \end{array}$ with N ≥ 3, we obtain two isolated singular solutions ui with i = 1, 2 such that Mθ(ui) > 0 under other assumptions.
doi:10.1515/anona-2020-0103 fatcat:tipdzfcxxrelzcylii7q3s2aci