Sensor Data-Driven Bearing Fault Diagnosis Based on Deep Convolutional Neural Networks and S-Transform

Guoqiang Li, Chao Deng, Jun Wu, Xuebing Xu, Xinyu Shao, Yuanhang Wang
2019 Sensors  
Accurate and timely bearing fault diagnosis is crucial to decrease the probability of unexpected failures of rotating machinery and improve the efficiency of its scheduled maintenance. Since convolutional neural networks (CNN) have poor feature extraction capability for sensor data with 1D format, CNN combined with signal processing algorithm is often adopted for fault diagnosis. This increases manual conversion work and expertise dependence while reducing the feasibility and robustness of the
more » ... orresponding fault diagnosis method. In this paper, a novel sensor data-driven fault diagnosis method is proposed by fusing S-transform (ST) algorithm and CNN, namely ST-CNN. First of all, a ST layer is designed based on S-transform algorithm. In the ST layer, sensor data is automatically converted into 2D time-frequency matrix without manual conversion work. Then, a new ST-CNN model is constructed, and the time-frequency coefficient matrixes are inputted into the constructed ST-CNN model. After the training process of the ST-CNN model is completed, the classification layer such as softmax performs the fault diagnosis. Finally, the diagnosis performance of the proposed method is evaluated by using two public available datasets of bearings. The experimental results show that the proposed method performs the higher and more robust diagnosis performance than other existing methods.
doi:10.3390/s19122750 fatcat:d2kqztac7nanrpkuaddwxx32lq