Dirac structures on Hilbert spaces

A. Parsian, A. Shafei Deh Abad
1999 International Journal of Mathematics and Mathematical Sciences  
For a real Hilbert space(H,〈,〉), a subspaceL⊂H⊕His said to be a Dirac structure onHif it is maximally isotropic with respect to the pairing〈(x,y),(x′,y′)〉+=(1/2)(〈x,y′〉+〈x′,y〉). By investigating some basic properties of these structures, it is shown that Dirac structures onHare in one-to-one correspondence with isometries onH, and, any two Dirac structures are isometric. It is, also, proved that any Dirac structure on a smooth manifold in the sense of [1] yields a Dirac structure on some
more » ... ture on some Hilbert space. The graph of any densely defined skew symmetric linear operator on a Hilbert space is, also, shown to be a Dirac structure. For a Dirac structureLonH, everyz∈His uniquely decomposed asz=p1(l)+p2(l)for somel∈L, wherep1andp2are projections. Whenp1(L)is closed, for any Hilbert subspaceW⊂H, an induced Dirac structure onWis introduced. The latter concept has also been generalized.
doi:10.1155/s0161171299220972 fatcat:lieflqcusfdqtfjqkcrmroq7f4