Quantum Finite Automata and Weighted Automata [article]

M.V. Panduranga Rao, V. Vinay
2007 arXiv   pre-print
Quantum finite automata derive their strength by exploiting interference in complex valued probability amplitudes. Of particular interest is the 2-way model of Ambainis and Watrous that has both quantum and classical states (2QCFA) [A. Ambainis and J. Watrous, Two-way finite automata with quantum and classical state, Theoretical Computer Science, 287(1), pp. 299-311, 2002], since it combines the advantage of the power of interference in a constant-sized quantum system with a 2-way head. This
more » ... er is a step towards finding the least powerful model which is purely classical and can mimic the dynamics of quantum phase. We consider weighted automata with the Cortes-Mohri definition of language recognition [C. Cortes and M. Mohri, Context-Free Recognition with Weighted Automata, Grammars 3(2/3), pp. 133-150, 2000] as a candidate model for simulating 2QCFA. Given any 2QCFA that (i) uses the accept-reject-continue observable, (ii) recognizes a language with one-sided error and (iii) the entries of whose unitary matrices are algebraic complex numbers, we show a method of constructing a weighted automaton over C that simulates it efficiently.
arXiv:quant-ph/0701144v1 fatcat:u6h632fenvcztnxuggkuvopwla