Operando visualisation of kinetically-induced lithium heterogeneities in single-particle layered Ni-rich cathodes [post]

Chao Xu, Alice J. Merryweather, Shrinidhi S. Pandurangi, Zhengyan Lun, David S. Hall, Vikram S. Deshpande, Norman A. Fleck, Christoph Schnedermann, Akshay Rao, Clare P. Grey
2022 unpublished
Understanding how lithium-ion dynamics affect the (de)lithiation mechanisms of state-of-the-art nickel-rich layered oxide cathodes is crucial to improving electrochemical performance. Here, we directly observe two distinct kinetically-induced lithium heterogeneities within single-crystal LiNixMnyCo(1-x-y)O2 (NMC) particles using recently developed operando optical microscopy, challenging the notion that uniform (de)lithiation occurs within individual particles. Upon delithiation, a rapid
more » ... e in lithium diffusivity at the beginning of charge results in particles with lithium-poor peripheries and lithium-rich cores. The slow ion diffusion at near-full lithiation states – and slow charge transfer kinetics – also leads to heterogeneity at the end of discharge, with a lithium-rich surface preventing complete lithiation. Finite-element modelling confirms that concentration-dependent diffusivity is necessary to reproduce these phenomena. Our results show that diffusion limitations cause first-cycle capacity losses in Ni-rich cathodes.
doi:10.26434/chemrxiv-2022-qb80n fatcat:m5svqps2once7mzd6qvnct6t3q