Arm-Stroke Descriptor Variability during 200-m Front Crawl Swimming

Matteo Cortesi, Rocco Di Michele, Silvia Fantozzi, Sandro Bartolomei, Giorgio Gatta
2021 Sensors  
The present study aimed to explore the variability of the arm-stroke temporal descriptors between and within laps during middle-distance swimming event using IMMUs. Eight male swimmers performed a 200-m maximum front-crawl in which the inter-lap and intra-lap variability of velocity, stroke rate, stroke-phases duration and arm-coordination index were measured through five units of IMMU. An algorithm computes the 3D coordinates of the wrist by means the IMMU orientation and the kinematic chain
more » ... upper arm biomechanical model, and it recognizes the start events of the four arm-stroke phases. Velocity and stroke rate had a mean value of 1.47 ± 0.10 m·s−1 and 32.94 ± 4.84 cycles·min−1, respectively, and a significant decrease along the 200-m (p < 0.001; η2 = 0.80 and 0.47). The end of each lap showed significantly lower stroke rate compared to the start and the middle segment (p < 0.05; η2 = 0.55). No other significant inter-lap and intra-lap differences were detected. The two main findings are: (i) IMMUs technology can be an effective solution to continuously monitor the temporal descriptors during the swimming trial; (ii) swimmers are able to keep stable their temporal technique descriptors in a middle-distance event, despite the decrease of velocity and stroke rate.
doi:10.3390/s21020324 pmid:33418870 fatcat:ei5d4mb7dzd65jou3h2fem2n5a