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Predicting upper-extremity function recovery
from kinematics in stroke patients following
goal-oriented computer-based training
Fabrizio Antenucci2*, Belén Rubio Ballester1*, Martina Maier1*, Anthony C. C. Coolen2* and Paul F. M.
J. Verschure1,3*

Abstract

Background: After a stroke, a wide range of deficits can occur with varying onset latencies. As a result,
predicting impairment and recovery are enormous challenges in neurorehabilitation. Body function and
structure, as well as activities, are assessed using clinical scales. For functional deficits of the upper extremities
these include the Fugl-Meyer Assessment for the Upper Extremity (FM-UE), the Chedoke Arm and Hand
Activity Inventory (CAHAI) and Barthel Index (BI), administered by clinicians. Although these scales are
generally accepted for the evaluation of the motor and functional impairment of the upper-limbs, they are
time-consuming, show high inter-rater variability, have low ecological validity, and are vulnerable to biases
introduced by compensatory movements and action modifications. For these reasons, alternative methods need
to be developed for efficient and objective assessment. Computer-based motion capture and classification tools
have the potential to collect and process kinematic data to estimate impairment, function and recovery while
overcoming these limitations.

Methods: We present a method for estimating clinical scores from movement parameters that are entirely
extracted from kinematic data recorded during unsupervised rehabilitation sessions performed with the
Rehabilitation Gaming System (RGS). RGS is a rehabilitation technology that uses image-based motion
capture, goal-oriented individualised training, virtual reality content delivery, and restricts compensatory trunk
movements through feedback. The main protocol considered in this study asks patients to use their upper
limbs to intercept spheres that are presented in a 3 dimensional virtual reality display. RGS maps the planar
physical arm movements onto matching movements by an avatar presented in a first-person perspective. In this
analysis, we performed a multivariate regression using clinical data from 98 stroke patients who completed a
total of 191 sessions with RGS.

Results: Our multivariate regression model reaches an accuracy of R2 : 0.38, with an error (σ : 12.8), in
predicting FM-UE scores. We analyse our model by assessing reliability (r = 0.89 for test-retest), sensitivity to
clinical improvements (95% true positive rate) and generalisation to other tasks that involve planar reaching
movements (R2 : 0.39). The model achieves comparable accuracy also for the CAHAI (R2 : 0.40) and BI
scales (R2 : 0.35).

Conclusions: Our results highlight the clinically relevant predictive power of kinematic data collected during
unsupervised goal-oriented motor training combined with automated inference techniques and provide new
insight into factors underlying recovery and its biomarkers.
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sensing; Motion classification; Multivariate regression
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Background
Stroke is the second major cause of death and disabil-
ity worldwide, with about 15 million new cases every
year [1]. One third of these cases lead to persistent cog-
nitive and motor disabilities [2]. About 80% of stroke
survivors present weakness and partial loss of volun-
tary control in the upper-extremities [3], or hemipare-
sis, which is often associated with other sensorimotor
alterations, such as hypertonia or tremor.
Although hemiparesis is a highly prevalent symptom

and severely limits the independence of affected pa-
tients, its causes and recovery dynamics are not fully
understood [4]. Recent literature converges onto the
core idea that it is mainly due to a combination of
residual corticospinal tract capacity and an upregula-
tion of the reticulospinal tract [5, 6]. Further, recovery
seems to follow a temporal structure where most of
the improvement occurs during the first months post-
stroke [7, 8]. However, one dilemma in understand-
ing the mechanism of hemiparesis and its recovery is
that it is based on assessment methods such as the
Fugl-Meyer and ARAT scales which have in turn their
own limitations. Indeed, a recent systematic review [9]
investigating a total of 225 studies (N=6197) using
151 different kinematic metrics found that kinematic
assessments of upper limb sensorimotor function are
poorly standardised and rarely investigate clinimetrics
in an unbiased manner. Specifically, using descriptors
of accuracy, efficacy, efficiency, movement planning,
precision, spatial posture, speed, temporal posture,
and range of movement together with clinimetric prop-
erties of these descriptors (i.e., reliability, measure-
ment error, convergent validity, and responsiveness),
the authors show that the studies analysed exclusively
focused on finding correlations between measures of
impairment, and only two of the studies reported ex-
plicit responsiveness metrics such as correlations in
change. Actually, both cross-sectional and longitudinal
construct validity have been supported by the relation-
ship between kinematic measures of reaching and the
degree of sensorimotor impairment or scores obtained
with clinical rating scales [10]. However, there is very
limited information regarding test-retest reliability, i.e
reproducibility, and responsiveness of kinematic out-
come measures of reaching performance.
In order to advance our knowledge about the hemi-

paresis phenotype and its progression it seems nec-
essary to find alternative methods and measures of
motor function and recovery that are objective, re-
liable and sensitive. One proposal by Murphy et al.
[11] explored responsiveness in a number of kinematic
descriptors and found a significant covariation of the
ARAT scores with movement time (R2=0.36), smooth-
ness (R2=0.31), and trunk displacement (R2=0.35).

Although these results are promising, the study in-
volves a limited number of subjects (N=24) from an
highly homogeneous sample (i.e., acute patients only).
Further, the ARAT clinical scale presents poor robust-
ness to compensation and is especially vulnerable to
the use of explicit strategies to boost performance.
Majeed et al. [12] explored the application of mod-
els based on LASSO regression to predict changes in
motor ability (FM-UE) and motor function (WMFT).
These models propose that recovery in both scales
can be approximated by the patient’s age, the pa-
tient’s motor control during the execution of fast move-
ments, and other demographic and clinical features,
altogether accounting for 65% and 86% of the variabil-
ity for the FM-UE and WMFT scales respectively. Al-
though these models reach exceptional accuracy, their
utility is limited because they make use of kinematic
data obtained during the supervised execution of very
specific pointing movements, and are based on generic
unbounded linear models, with the consequence that
their predicted values could be largely outside the
meaningful range of the scale (e.g. predict FM-UE
scores larger than 66 points).

We propose a new approach towards using kinematic
data obtained in unsupervised rehabilitation sessions
to predict level of impairment and functional recovery.
Data is obtained from patients engaging with goal-
oriented embodied individualised training with the Re-
habilitation Gaming system (RGS). We first explore
the clinimetric properties of hand movements that
were collected during unsupervised RGS sessions. Sec-
ondly, we build and analyse the performance (i.e., ex-
ternal validity, robustness, responsiveness, sensitivity,
and generalisation) of a predictive model of motor re-
covery (1-3 months post-baseline) based on data of
acute to chronic stroke survivors.

Methods
Subjects

Our retrospective analysis uses data of 191 RGS ses-
sions from 98 hemiplegic patients (age in range [23,
87], mean 63; days post-stroke in range [5, 3045], mean
400; cf. Table 1) who were recruited between 2010 and
2015 to participate in studies conducted in Barcelona
and Tarragona, Spain [13, 14, 15]. Participants met the
following inclusion criteria: 1) ischemic strokes (mid-
dle cerebral artery territory) or hemorrhagic strokes
(intracerebral); 2) mild-to-moderate upper limb hemi-
paresis (Medical Research Council scale for proximal
muscles > 2) after a first-ever stroke; 3) age between 20
and 90 years old; and 4) the absence of any significant
cognitive impairment (Mini-Mental State Evaluation
> 22).
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Table 1 Characteristics of the 191 samples composing the main dataset (single session, Spheroids scenario). The r columns refer to
the Pearson correlation coefficients with the FM-UE, CAHAI, and BI clinical scales, respectively. Correlations below the significance
threshold r ∼ 0.081 (cf. Fig. 12 in Appendix) are in grey. The clinical scales are measured no more than 4 days before or after the
coupled RGS session. The ‘instantaneous’ variables (6-12) obtained directly from RGS log-files are in Italic type. The work area is
computed as the area of the complex hull of the hand movements using standard methods, e.g. Jarvis’ Algorithm [16]. The distance
covered refers to the total length of the hand paths during training. The performance success rate is defined as the number of
spheres intercepted over the total released during the RGS session. The ‘Smoothness’ and ‘TGDM’ are defined in the main text, cf.
Sec. ‘Identification of variables’.

Variables Range [min, max] Mean SD r(FM-UE) r(CAHAI) r(BI) Missing
FM-UE score [4, 66] 43 16 1 0.89 0.34 -
CAHAI score [13, 91] 52 26 0.89 1 0.50 -
BI score [10, 100] 80 21 0.34 0.50 1 15
1. Gender female/male 73/118 - 0.17 0.11 0.036 -
2. Age [23, 87] 63 12.8 -0.015 -0.10 -0.30 -
3. Dominant side more affected yes/no 72/119 - -0.013 0.039 0.21 -
4. Time since stroke (days) [5, 3045] 400 625 -0.25 -0.17 0.22 -
5. Sessions completed so far [2, 49] 10 11 0.31 0.38 0.32 -
6. Work area (m2) [0.011, 1.8] 0.38 0.35 0.29 0.27 0.14 -
7. Distance covered (m) [2.6, 240] 56 34 0.18 0.21 0.26 -
8. Performance (% success) [0.37, 0.94] 0.68 0.105 0.33 0.37 0.33 -
9. Maximum reaching speed (m/s) [2.8, 88] 18 16 0.17 0.13 0.061 -
10. Difficulty level reached [-0.16, 0.89] 0.46 0.23 0.45 0.52 0.46 -
11. Smoothness (mm) [0.17, 3.7] 1.2 0.55 0.42 0.39 0.28 -
12. TGDM (m) [0.011, 0.12] 0.062 0.021 0.52 0.58 0.43 -

Protocol
Participants followed a rehabilitation protocol includ-
ing 3-5 weekly sessions of 30 minutes each for 3-12
weeks using the Rehabilitation Gaming System (RGS)
shown in Fig. 1. The joint movements of the user’s
head, shoulders and elbows are tracked and mapped
onto an avatar through a biomechanical model using a
custom developed vision based motion capture system.
Arm movements are displayed on a screen from a first-
person perspective, realising a rehabilitation paradigm
that combines goal-oriented embodied and situated ac-
tion execution, motor imagery, and action observation.
For the RGS sessions in the main dataset, cf. Table

1, the participants are instructed to intercept virtual
spheres that move towards them by executing hori-
zontal bimanual movements over the surface of a table
(‘Spheroids’ protocol). The task parameters (the fre-
quency of sphere appearance, their speed, their range,
and size) are combined in a single parameter (‘dif-
ficulty level’) and automatically adjusted during the
session in order to maintain the user’s performance be-
tween 70% and 80% success rate [17, 18]. The system
allows for the storage and extraction of performance
parameters as well as hand path trajectories derived
from joints’ positions and rotations recorded at about
100 Hz.
During the rehabilitation patients are evaluated us-

ing standard clinical scales: Fugl-Meyer Assessment
for the upper extremity (FM-UE), Chedoke Arm and
Hand Activity Inventory (CAHAI) and Barthel Index
(BI). When collecting the 191 samples (Table 1), the
following measures are taken to improve data quality:
• The clinical score measurements (FM-UE, CA-
HAI, BI) are coupled to the RGS session closest in

Figure 1 The Rehabilitation Gaming System (RGS). The
system consists of a PC, a 17 inch LCD touch display, a
image-based motion capture device (Kinect 360, Microsoft)
positioned on top of the screen [14]. In the inset we show a
screenshot from the ‘Spheroids’ activity during a RGS session.
The virtual tasks logic and graphics are implemented using the
Torque 3D and Unity 3D game engines.

time, with a maximum time separation of 4 days
between the measurement and the RGS session;

• The first two RGS sessions of a patient at the
start of the rehabilitation trajectory are excluded
to ensure that patients are familiar with the RGS
environment for all collected samples.

Outcomes and Analysis
To analyse the potential of RGS-derived movement de-
scriptors for capturing both impairment and recovery
in standardised clinical scales, we first extract a set of
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variables that are known to correlate with the severity
of hemiparesis [9, 12]. Next, to execute a convergent
validation analysis, we generate a model that combines
the information of several variables to estimate the pa-
tient’s score on a clinical scale. The model includes an
estimation of the prediction error. We use repeated
cross-validation to avoid overfitting, allocating 50% of
the samples to the training set and 50% to the vali-
dation set. We conduct a robustness analysis in order
to explore test-retest reliability. Additionally, we per-
form a sensitivity analysis by computing correlations
between the change in the movement descriptors and
clinical improvements. For this analysis we only con-
sider pairs of RGS sessions from the same patient for
which the time-difference between the two sessions is
larger than 16 days, for a total of 54 samples (108
RGS sessions and their associated demographical de-
scriptors and clinical assessments).
Finally, we explore the potential of the model to gen-

eralise to other tasks that involve bimanual 2D planar
reaching movements. To study this last property we
identify a second dataset of 37 samples from a previ-
ous study in which 19 subacute stroke patients with
hemiparesis were rehabilitating with a different RGS
training scenario which is a variation on the well known
arcade game ‘Whac-A-Mole’ [14].
The prediction analysis we present will focus on the

FM-UE score, and we will briefly discuss the generali-
sation to the CAHAI and BI scales.

Identification of variables
We consider 31 variables in total, 12 are first order vari-
ables while the remaining 19 are second order variables
and obtained as functions of the first order ones.
We identify two groups of first order variables: 1) de-

mographic and physiological data at recruitment, cf.
variables 1-5 in Table 1, and 2) kinematic descriptors
extracted for the more affected limb during training
sessions, cf. variables 6-12 in Table 1. For the evalua-
tion of all kinematic descriptors, the first and last two
minutes of each training session are discarded to avoid
the interference of behaviours or events related to the
start and the ending of the training session (revision
of instructions, postural adjustments, exposure to the
final score screen, etc.).
Second order variables include chronicity (i.e. acute,

sub-acute and chronic categories) and the difference
between the less and the more affected upper-limb in
each of the quantitative first order variables, as well
as their logarithmic transformations. The descriptive
statistics of second order variables are given in Table
5 in the Appendix.
Among the above mentioned variables, most are

obvious and/or well-known [9] (cf. caption of Ta-
ble 1). However, we introduce also the new descrip-
tors ‘Smoothness’ and ‘Total-goal direct movement’

(TGDM). Specifically, to extract information on UE
motor function we introduce an original kinematic
descriptor, J(σ), to assess the patient’s movements
at a specific temporal resolution, σ. This metric al-
lows us to isolate goal-oriented movements from the
hand trajectory in a certain direction, assumed to be
stored over time as a function f(t). For the main
dataset, we have considered the left/right direction,
as it is the principal axes in the movement dynam-
ics of ‘Spheroids’ protocol. We assume measurements
are taken at discrete time points ti = i∆ for i =
0, 1, ..., T − 1, with ∆ being the timestep (for the
‘Spheroids’ dataset we have ∆ ≃ 0.01 s). We define the
total hand displacement during goal-oriented move-
ments J(σ) as the difference between the actual move-
ments and a smoothened version of the discrete move-
ments. The smoothened hand path fσ(t) is obtained
using a Gaussian smoothing process with parameter σ

fσ(ti) =

∑T−1
j=0 f(tj) exp

[

− (ti−tj)
2

2σ2

]

∑T−1
j=0 exp

[

− (ti−tj)2

2σ2

] (1)

where the parameter σ defines how smooth the new
trajectory will be, see an example in Fig. 2. Therefore
J(σ) is obtained as

J(σ) =

√

∑T−1
i=0 [fσ(ti)− f(ti)]

2

T
. (2)

Following this analysis method we derive the two new
variables corresponding to the value of J(σ) at the
two peaks in the σ-dependent Pearson correlation with
the clinical scales, cf. Fig. 3: ‘Smoothness’ in corre-
spondence to the high-frequency peak, and ‘TGDM’ in
correspondence to the low-frequency peak. The loca-
tion of two peaks is weakly dependent on the clinical
scale considered, yet it appears to be related to the
data structure: the high-frequency peak is linked to
the time resolution of the data (∆ ≃ 0.01 s), while the
low-frequency peak is related to the typical timescale
of the Spheroids protocol, i.e. a spheroid is launched
every ∼ 10 s and moving towards opposite sides of the
tasks space. We will further interpret these two new
variables in the following analysis.

Predictive Models

To combine variables for the prediction of clinical
scores of impairment and recovery, we introduce a
model that allows for the presence of noise on both
the variables Z and the score S, and we hence name it
a double-noise parametric model. Its generative func-
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Figure 2 An example of the smoothed trajectory fσ(t) Eq. 1 (green line) for lateral (left/right) direction hand movements with
σ = 20s (left) σ = 0.5s (center) and σ = 0.02s (right) compared to the real trajectory as recorded by the camera (purple line).

tional form is

S(Z|θ) =B −A

2
tanh (β ·Z + β0 + σ1u)+

+
B +A

2
+ σ2v (3)

where θ = {β, β0, A,B, σ1, σ2} are the p+5 model hy-
perparameters to be inferred: β (association parame-
ters of p active variables), β0 (parametric offset), A e
B (range offsets), σ1 and σ2 (noise strengths). The

sources of noise u (the covariate noise) and v (the

score noise) are both assumed to be standard normally

distributed. Since tanh(−x) = − tanh(x), we remove

the resulting parameter sign ambiguity by enforcing

B ≥ A. Note that the saturation of the sigmoidal func-

tion captures the boundedness of the clinical scores, so

that the average over the noise of the predicted score

S is constrained in the interval [A,B].
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Figure 3 Pearson correlation coefficient between clinical scales
(FM-UE, CAHAI, BI) and J(σ) (cf. Eq. (2)) obtained for the
lateral (left/right) direction of the paretic hand trajectory at
different values of σ for the ‘Spheroids’ dataset (cf. Table 1).
The high-frequency peak is at about σ = 0.01 s for all three
scales. The low-frequency peak is at σ = 8.8 s for FM-UE,
σ = 5.9 s for CAHAI, and σ = 17 s for BI.

The probability of a particular score S, given the
variables and the hyperparameters, is given by

p(S|Z,θ) (4)

=
1

σ2

√
2π

∫

Dv e
−

1

2σ2
2
[S−a tanh(β·Z+β0+σ1v)−b]2

with the short-hands Dv = (2π)−
1
2 e−

1
2 v

2

dv, a = (B −
A)/2, b = (B+A)/2. We use the following (improper)
prior distribution over the parameters θ:

p(θ) = Z−1e−
1
2dβ

2

p(σ1) p(σ2). (5)

We take p(σ1) ∼ e−q/σ1 and similar for σ2 with q
being a very small number, typically of the order of
the accuracy of the numerical work, e.g. q ∼ 10−10.
These priors guarantee that the log-likelihood function
is bounded from below.

We adopt Maximum A Posteriori (MAP) inference:
given the dataset D = {(Z1, S1), . . . , (Zn, Sn)}, the
optimal parameters θ correspond to the maximum of
the posterior probability or, alternatively, to the min-
imum of the regularised log-likelihood function:

Ω(θ)=

−
n
∑

i=1

log

∫

Dz e
−

1

2σ2
2
[Si−a tanh(β·Zi+β0+σ1z)−b]2

+
1

2
dβ2 + n log(σ2) +

q

σ2
+

q

σ1
. (6)

The errors on the inferred parameters θ are estimated
from the curvature of the regularised log-likelihood
function at the minimum.
Two simpler models derived from (6) can be consid-

ered corresponding to having either score noise only or
covariate noise only:
• Score noise model, σ1 = 0. Taking the limit σ1 →
0 in (6) gives

Ωsco(θ) =

1

2σ2
2

n
∑

i=1

[Si − b− a tanh(β ·Zi + β0)]
2
+

+ n log(σ2) +
1

2
dβ2 +

q

σ2
, (7)

• Covariate noise model, σ2 = 0 Taking the limit
σ2 → 0 in (6) gives

Ωcov(θ) =

1

2σ2
1

n
∑

i=1

[

tanh−1
(Si−b

a

)

−β ·Zi−β0

]2

+

+

n
∑

i=1

log
[

a2−(Si−b)2
]

+ n log
(σ1

a

)

+

+
1

2
dβ2 +

q

σ1
(8)

provided |Si−b| < a for all i, otherwise Ωcov(θ) =
∞. This implies that for each b the minimisation
over a is to be carried out strictly over the open
interval a > maxi|Si−b|.

Results
Identification of features
To explore the convergent validity of RGS-derived
kinematic descriptors in comparison to standardised
clinical assessments, we compute Pearson correlations
between all the variables (the RGS-derived descrip-
tors and the baseline characteristics) and the clini-
cal scores, cf. Fig. 4. By comparing these to a ran-
domised outcome distribution we identify a signifi-
cance threshold of r ≃ 0.081 for all the Pearson correla-
tions variable-scores (cf. Fig. 12 in Appendix). Several
of the kinematic descriptors, in particular ‘TGDM’ and
‘difficulty level reached’ (‘difficulty’) correlate highly
with all clinical scales. Generally there is a high level of
consistency between correlations of the variables with
the different clinical scales examined. The main ex-
ceptions are ‘age’ and ‘time since stroke’ (’days-s’).
The former does not display a relevant correlation with
FM-UE and CAHAI scores but it is negatively corre-
lated with BI (r = −0.30, p < .0001), while the lat-
ter correlates negatively with the FM-UE (r = −0.25,
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Figure 4 Correlogram of clinical scales and variables, cf. Table
1. The scale indicates the value of the correlation coefficients,
going from -1 (full negative correlation) to 1 (full positive
correlation). Black bordered squares indicate significant
correlations (p < 0.05).

p = .00049) and CAHAI (r = −0.17, p = .019) scores
but positively with BI (r = 0.22, p = .0033). The cor-
relations between FM-UE and CAHAI scores is high
(r = 0.89, p < .0001), while the consistency with BI is
significantly lower: (r = 0.34, p < .0001 with FM-UE;
r = 0.5, p < .0001 with CAHAI). Generally, the cor-
relations of the kinematic descriptors are higher with
FM-UE and CAHAI than with BI.
All kinematic variables show consistent inter-variables

correlation. In particular, ‘maximum reaching speed’
(‘max-sp’) correlates highly with ‘work area’ (‘w-area’)
(r = 0.76, p < .0001). This is interesting as these two
variables are measured in a very different way, as the
maximum reaching speed is obtained in a single instant
while the work area is a function of the whole tra-
jectory generated over the RGS session. The variable
‘age’ correlates negatively with ‘TGDM’ (r = −0.31,
p < .0001) and ‘difficulty’ (r = −0.24, p = .00098),
while it is uncorrelated with FM-UE and CAHAI
scores, but not to BI (r = −0.30, p < .0001). This
suggests that age-related technology proficiency may
affect the kinematic descriptors. Nevertheless, this ef-
fect is relatively weak, i.e., the correlations of ‘diffi-
culty’ and ‘TGDM’ with the clinical scores are signif-
icantly higher than the ones with ‘age’.
In order to better understand the meaning of the

two variables obtained with the smoothing tech-
niques (‘smoothness’ and ‘TGDM’), we also extract
finite time-windowed variables for comparison. Specif-
ically, we compute the maximum range of movement

(left/right direction) within overlapping time windows
of size σ, where σ is again fixed by the condition of
maximum correlation with the clinical scale of interest,
and we average the measurements across all possible
windows along the whole RGS session. The resulting
values show a very high correlation with the TGDM
variable (r = 0.98, p < 0.01) and show very simi-
lar Pearson coefficients with the FM-UE (r = 0.54,
p < 0.01), CAHAI (r = 0.57, p < 0.01) and BI
(r = 0.44, p < 0.01) clinical scales. These results sug-
gest that the TGDM is capturing information about
the typical range of movement associated with the sce-
nario events occurring within relevant time windows
(i.e. about 10 seconds in the ‘Spheroids’ scenario). Fol-
lowing the same method, we extract time-windowed
maximum reaching speed. The resulting values show
a very high correlation with the smoothness variable
(r = 0.87, p < 0.01) together with very similar Pearson
coefficients with the FM-UE (r = 0.42, p < 0.01), CA-
HAI (r = 0.39, p < 0.01) and BI (r = 0.21, p < 0.01)
clinical scales. These results suggest that smoothness
is linked to the ability of the patient to perform fast
movements to complete the RGS tasks.

External validity: prediction of instantaneous scores
In the following we combine information from several
variables to estimate clinical scores associated with a
single patient’s RGS session.
In this section we will focus mostly on the FM-UE

scale. The other clinical scales will be discussed in Sec.
‘Generalisation to CAHAI and BI scales’. Neverthe-
less, it is useful to anticipate here that the results for
CAHAI are very similar to FM-UE. This similarity
is expected as the two scales have high relative cor-
relations and comparable correlations to most of the
variables, cf. Tables 1,5. To be quantitative, we can
consider the case in which the FM-UE score SFM

i of
the ‘Spheroids’ dataset is estimated by simply rescal-
ing the corresponding CAHAI value SCAHAI

i by 66/91;
this leads to the standard error

1

191

√

√

√

√

191
∑

i=1

[(SFM
i − (66/91)SCAHAI

i )2] ≃ 10.1 (9)

and a R2 value of 1 − σ2
FM,CAHAI/σ

2
FM ≃ 0.62. The

prediction of BI scores from kinematic descriptors is
instead generally harder. This last point can be ex-
plained by the lower correlation of BI scores with most
of the variables (cf. Tables 1,5). If we estimate the
FM-UE score by a simple rescaling of the BI value by
66/100 we get a standard error of

1

176

√

√

√

√

176
∑

i=1

[(SFM
i − (66/100)SBI

i )2] ≃ 15.5 (10)
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Table 2 The association parameters β of the optimal variable set
for the prediction of ‘instantaneous FM-UE’ and ‘FM-UE change’
(∆FM-UE), ’Spheroids’ protocol. Note that for ‘FM-UE change’
the value of a variable refers to the difference between the two
sessions. The values listed here refer to the normalised variables,
so that the values of the different βs are directly comparable.

Covariate β(FM-UE) β(∆FM-UE)
Difficulty 0.186(0.051) 0.194(0.062)
TGDM 0.049(0.087) 0.184(0.090)
Diff. Distance covered 0.027(0.044) -0.220(0.080)
Diff. TGDM -0.197(0.057) -0.043(0.070)
Log. work area 0.073(0.059) -0.108(0.064)
Log. smoothness 0.086(0.079) -0.070(0.078)
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Figure 5 True FM-UE versus predicted FM-UE for the 191
samples of Table 1 (‘Spheroids’ scenario), using the covariate
noise model with association parameters given in Table 2.

and a R2 value of 1 − σ2
FM,BI/σ

2
FM ≃ 0.12. So we see

again that BI carries different information than FM-
UE (or CAHAI).
In the following, we adopt the covariate noise model

for predictions of the FM-UE scale, cf. Eq. (8). In-
deed we found that the three models presented in Sec.
‘Predictive models’ (double noise model, score noise
model, covariate noise model) offer comparable per-
formance in prediction of FM-UE scale on the dataset
in Table 1. The typical error in the final prediction is
of order ∼ 10, while the inferred noise score error σ2 is
typically ∼ 0.1. In this sense the score noise has little
impact in this situation and so we prefer the covariate
noise model to decrease the number of parameters to
be inferred.
Here we aim to estimate the instantaneous FM-UE

scores. By instantaneous we mean that we use only pa-
tient’s baseline characteristics and RGS-derived move-

ment descriptors (extracted from a single session log-
file). In particular, we rule out the two variables ‘ses-
sion completed so far’ and ‘time since stroke’ and the
second order variables obtained from them. In this
way, the prediction is intended to anticipate the clin-
ical status of the patient at a given moment without
knowledge of the rehabilitation history.
To avoid overfitting, we perform repeated cross-

validation with 50% of samples for training and 50%
for validation, obtaining the optimal active set of vari-
ables possible for our dataset[1]. The active variables
are 6 and shown in Table 2. In total we have 10 pa-
rameters (6 association parameters and 4 hyperparam-
eters) inferred from the 191 sessions. The most impor-
tant variables for the prediction of the instantaneous
FM-UE score are ‘difficulty’ and ‘Diff. TGDM’ (differ-
ence in TGDM between the non-paretic arm and the
paretic arm). We note that the resulting active vari-
able set does not contain patient’s baseline variables
and the estimation of scores on clinical scales are solely
obtained from (unsupervised) RGS-derived data. This
also means that predictions made by this model for
different RGS sessions of the same patient are con-
sidered independent measurements. The hyperparam-
eters of the model that predicts FM-UE are given by
a = 32.72(0.85), b = 34.55(0.73), σ1 = 0.551(0.043)
and β0 = 0.370(0.051). To evaluate the accuracy of the
final regression model on unseen data, we consider the
Leave-one-out cross-validation (LOOCV) for which we
obtain an accuracy on the training set of 0.755 while
the accuracy on the validation set is 0.746[2], so that
the difference is about 1.2%.
Eventually, we compare the true and predicted score

values, shown in Fig. 5. The model predicts the FM-
UE score with an average error of EFM ∼ 12.8, Pearson
r true-predicted of 0.63 and a coefficient of determina-
tion R2 = 0.38. These values are intermediate between
an estimation based on simple rescaling of CAHAI and
BI scores, cf. Eqs. (9),(10).

Robustness: test-retest reliability
To evaluate the test-retest reliability of our model for
prediction of the instantaneous FM-UE score, we con-
sider two unseen datasets each composed of 921 RGS
sessions, for a total of 1842 unseen RGS sessions. Each
session in the first dataset ‘test’ is associated with a
session in the second dataset ‘retest’ and obtained from
the same patient within less than 48 hours. The small

[1]We have enforced the presence of ‘Diff. distance cov-
ered’ in the active variable set since it is relevant in
the prediction of clinical change, cf. Tables 3,6.
[2]Here we define the accuracy as the percentage of
points that are correctly estimated above or below the
median FM-UE score 47.
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Figure 6 Predicted FM-UE score of first session (test) vs
predicted FM-UE score of second session (retest) for unseen
921 couples of RGS sessions. Each couple is recorded from a
same patient within 48 hours. The predictions are obtained
using the covariate noise model with association parameters
given in Table 2.

time frame makes it plausible that the clinical state of
the patient is unchanged between the two test-retest
sessions, and so they can be used to assess the reliabil-
ity of the regression models. These data were collected
in the same trials as the main dataset, but they cor-
respond to rehabilitation sessions for which we do not
have an associated measurement of a clinical scale (so
they cannot be used for training).
The Pearson correlation between the ‘test’ and

‘retest’ data sets is 0.89, that is “Good correlation”
according to Cronbach’s alpha score, cf. Fig. 6. In Fig.
6 we also show the interval defined by the standard
error of the regression E ≃ 12.7: the large majority of
values are within this interval. Indeed we measure an
average retest error

√
∑

i(S
test
i − Sretest

i )2/N equal to
5.9. This value gives an upper bound to the real value
and it is less than half of the average error observed
on the true score prediction.
These results support the internal consistency of this

assessment method to predict the instantaneous clini-
cal scores of the patients.

Responsiveness: prediction of improvement
Starting from the original dataset (’Spheroids’, Table
1), we design a new dataset (’responsiveness’ dataset,
Table 3) composed of 54 samples where each sample
represents a couple of sessions of the same patient for

which the time lapsed between the two is larger than 16
days. We observe that the Pearson correlation between
change in FM-UE (∆FM-UE) and change in CAHAI
(∆CAHAI) is r = 0.68, Pearson between ∆FM-UE
and change in BI (∆BI) is r = 0.67, while the Pearson
between ∆CAHAI and ∆BI is r = 0.72. For each sam-
ple we consider now as variables the change (between
the two sessions) of the original variables.
By comparing it to a randomised outcome distribu-

tion, we identify a significance threshold of r ∼ 0.14
for the Pearson correlations variable-scores. Several of
the variables correlate highly with the change in all
three clinical scores, cf. Fig. 7. The highest correlated
variable is ‘Change in TGDM’ (r = 0.48, p = .00024
with ∆FM-UE; r = 0.55, p < .0001 with ∆CAHAI;
r = 0.49, p = .0011 with ∆BI). Note that, in com-
parison to the prediction of a single session’s score,
the variables ‘age’ and ‘chronic’ are more correlated
with the outcome when predicting the score change
(cf. Tables 1,3 and Tables 5,6 in the Appendix). The
initial scores (the clinical scores at the first session)
have high correlation with change because of ceiling
effect (cf. Table 6 in Appendix). In Fig. 7 we show the
correlogram of all the variables and clinical scales. We
observe that generally the correlations between kine-
matic descriptors in a single session (cf. Fig. 4) are
preserved also when considering the change between
sessions; for example the highest inter-variables corre-
lation is for ‘Change in w-area’ and ‘Change in max-sp’
at (r = 0.87, p < .0001).
We utilise this dataset to analyse the responsiveness

of the previous model (obtained for predictions of in-
stantaneous scores) in detecting changes of clinical sta-
tus in the same patient. We therefore adopt here the
same set of active variable used for the prediction of
instantaneous clinical scores. The association param-
eters of the model that predicts ∆FM-UE are shown
in Table 2. The corresponding model hyperparameters
are a = 23.3(3.3), b = 20.9(3.2), σ1 = 0.430(0.060) and
β0 = −0.68(0.12).
We compare the true and predicted ∆FM-UE in Fig.

8. The Pearson correlation between true ∆FM-UE and
predicted ∆FM-UE is 0.76. The value of the coefficient
of determination R2 is 0.57. These results show that
the model has a good responsiveness to clinical change
with a precision comparable to the one obtained for the
instantaneous score.

Sensitivity: prediction of recovery
In order to evaluate the sensitivity (i.e. the true pos-
itive rate) of the model to predict ∆FM-UE we first
identify 38 out of the 54 samples from the ’respon-
siveness’ dataset (cf. Table 3) for which the associ-
ated ∆FM-UE values exceed an MDC of 4 points.
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Table 3 Characteristics of the 54 samples composing the responsiveness dataset. We select a number of sessions of same patient with a
delay of at least 16 days from the main dataset, cf. Table 1. The last three columns report the Pearson coefficient correlation between
the variable and the change of clinical score between the two session. Correlations below the significance threshold r ∼ 0.14 are in grey.
Characteristics of second order variables for this dataset are shown in Table 6 in Appendix.

Variables Range [min,max] Mean SD r(∆FM-UE) r(∆CAHAI) r(∆BI) Missing
Change in FM-UE score [-2, 35] 9.1 9.1 1 0.68 0.67 -
Change in CAHAI score [-1, 75] 25 19 0.68 1 0.72 -
Change in BI score [-6, 69] 19 22 0.67 0.72 1 13
1. Gender female/male 24/30 - -0.0046 0.14 0.29 -
2. Age [42, 84] 65 13 -0.25 0.061 0.051 -
3. Dominant side more affected yes/no 24/30 - -0.21 0.0065 -0.043 -
4. Time since stroke (days) [1.5, 3.4] 2.1 0.46 -0.35 -0.37 -0.42 -
5. Sessions completed so far (at first) [5, 46] 23 14 -0.45 -0.33 -0.46 -
6. Change in work area (m2) [-1.2, 1.2] 0.066 0.43 0.15 0.048 0.12 -
7. Change in distance covered (m) [-68, 75] 14 23 0.21 0.22 0.19 -
8. Change in performance (% success) [-0.17, 0.40] 0.076 0.11 0.075 0.12 0.22 -
9. Change in max. reaching speed (m/s) [-51, 77] 3.3 21 0.087 0.048 0.063 -
10. Change in difficulty [-0.12, 0.91] 0.21 0.20 0.38 0.39 0.36 -
11. Change in smoothness (mm) [-0.51, 1.8] 0.22 0.50 0.37 0.35 0.39 -
12. Change in TGDM (m) [-0.046, 0.14] 0.024 0.035 0.48 0.55 0.49 -

Figure 7 Correlogram of change of clinical scale and change in
variables between couples of sessions of the same patient, cf.
Table 3. The scale indicates the value of the correlation
coefficients, going from -1 (full negative correlation) to 1 (full
positive correlation). Black bordered squares indicate
significant correlations (p < 0.05).

Given this subsample, with mean ∆FM-UE of 12.4
(SD: 9.4), our model predicts recovery in 36 of the
cases (∆FM-UE ≥ 4), indicating a TPR of 95% (mean
of predicted ∆FM-UE is 10.3, SD: 7.9), cf. Fig. 8.

Generalisation
For the generalisation analysis, we consider an addi-
tional 37 RGS sessions from 19 hemiparetic partici-
pants that trained in a different 2D VR-based motor
rehabilitation protocol derived from ‘Whac-A-Mole’
[14]. The observed FM-UE scores in this dataset are
in the range [5, 60], with mean 37 and SD 14.

Figure 8 True versus predicted ∆FM-UE for 54 data points of
‘responsiveness’ dataset (cf. Table 3), using the covariate
noise model with association parameters given in Table 4.

Unlike the ‘Spheroids’ protocol, the gameplay of
‘Whac-A-Mole’ requires movements on the full 2d
plane. In response, we utilise the smoothing technique
in both cardinal axes of the task. i.e. front/back and
left/right directions. Pearson correlations between the
clinical scales and the variable J(σ) reveal a similar
pattern to the one observed in the Spheroids scenario,
with a peak of the Pearson coefficients at about 1s cor-
responding to the variable TGDM in each direction (cf.
Fig. 13 in Appendix). The location of the main peak
is again close to the typical timescale of the proto-
col (that is faster than ‘Spheroids’). For the FM-UE
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Figure 9 True versus predicted FM-UE for 37 samples of the
‘Whac-A-Mole’ dataset, using the covariate noise model with
two active variables (TGDMfb and TGDMlr).

score, the highest Pearson coefficient is observed in the
frontal direction (r = 0.54 for σ = 1.3s); the lateral
hand displacement peak is (r = 0.50 at σ = 1.1s).
When predicting clinical scales, we use now only

2 active variables in order to limit overfitting: the
variables TGDMfb (Total-goal directed movement for
front/back direction) and TGDMlr (Total-goal di-
rected movement for left/right direction). We then in-
fer 6 parameters (2 association parameters + 4 hy-
perparameters) from the 37 RGS sessions. The two
association parameters are (for normalised variables)
βTGDMfb = 0.15(0.13) and βTGDMlr = 0.18(0.14). The
hyperparameters of the model that predicts FM-UE
for ‘Whac-A-Mole’ scenario are given by a = 31.9(3.5),
b = 31.0(2.5), σ1 = 0.49(0.11), and β0 = 0.21(0.13).
The FM-UE predictions are shown against the true

values in Fig. 9. The Pearson correlation between true
FM-UE and predicted FM-UE is 0.63. Average error is
E ∼ 11.2. The value of the coefficient of determination
R2 is 0.39.

Generalisation to CAHAI and BI scales
In the previous sections we focused on the FM-UE
scale but the CAHAI and BI scores are also available in
the main dataset (cf. Table 1); we can then gain some
insights on the differences between the three clinical
scales from the point of view of the RGS kinematics.
Overall, the CAHAI scale has similar properties to

FM-UE in relation to the kinematic descriptors, cf.

Table 4 The association parameters β for the prediction of the
instantaneous CAHAI, ’Spheroids’ scenario. The active variables
are the same as in Table 2. The values refer to the normalised
variables, so that the values of the different βs are directly
comparable.

Covariate β(CAHAI)
Difficulty 0.333(0.087)
TGDM 0.36(0.15)
Diff. Distance covered 0.016(0.088)
Diff. TGDM -0.187(0.098)
Log. work area 0.09(0.10)
Log. smoothness -0.04(0.14)
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Figure 10 True versus predicted CAHAI for 191 data points of
‘Spheroids’ dataset (cf. Table 1), using the covariate noise
model with association parameters given in Table 4.

Fig. 4. To stress the generalisation potential of the
model, we can then adopt the same model introduced
in Table 2 for the prediction of instantaneous FM-
UE scores also for the prediction of the instantaneous
CAHAI score. The association parameters for CAHAI
are reported in Table 4. The most important vari-
ables are ‘difficulty’ and ‘TGDM’. The hyperparam-
eters of the covariate noise model that predicts CA-
HAI scores are a = 39.158(0.099), b = 51.962(0.079),
σ1 = 0.953(0.064) and β0 = 0.0319(0.071). The pre-
dicted scores are plotted against the true CAHAI val-
ues in Fig. 10. The model predicts the CAHAI score
with an average error of ECAHAI ∼ 20.1, Pearson r
true-predicted of 0.66 and a coefficient of determina-
tion R2 = 0.40. This accuracy is close to what we ob-
tained for the prediction of the instantaneous FM-UE,
cf. Fig. 5.
In Fig. 11 we compare FM-UE and CAHAI, both for

the true scores and the predicted scores. We note that
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Figure 11 True FM-UE versus true CAHAI (green dots) and
predicted FM-UE versus predicted CAHAI (purple triangles
with errorbars) for 191 data points of ‘Spheroids’ database (cf.
Table 1). We use the covariate noise model with association
parameters given in Table 2 for FM-UE and Table 4 for
CAHAI.

the relationship between FM and CAHAI is generally
well preserved in the predictions; for example the Pear-
son between FM-UE and CAHAI scores is r = 0.89
for true values and r = 0.88 for predictions. The fact
that the variability in the true FM-UE vs true CAHAI
is seemingly comparable to the one in the prediction
model, reinforces the idea that the precision we achieve
is similar to the one of estimating FM-UE directly from
CAHAI, as we estimated using Eq. 9.

Finally, we observe that the model that predicts
FM-UE and CAHAI scores does not work well for
the BI. Most kinematics variables have significantly
smaller correlation with the BI (in particular ‘work
area’, ‘TGDM’, ‘smoothness’) while baseline informa-
tion and clinical history of the patient are compara-
tively more relevant (for example the patient’s age, cf.
Table 1 and Fig. 4). We then devise a different model
for the prediction of the BI considering all variables,
including not instantaneous ones (such as ‘time since
stroke’ or ‘session completed so far’). We use again re-
peated 50-50 cross-validation to avoid overfitting and
select optimal active variable set. The active variable
set for BI is composed by 5 variables (β values for nor-
malised variables): ’age’ (β = −0.21(0.15)), ‘sessions
completed so far’ (β = 0.24(0.19)), ‘difficulty’ (β =
1.21(0.72)), ’Log. time since stroke’ (β = 0.14(0.14)),
‘Log. Difficulty’ (β = −0.91(0.70)). Using a double
noise model, cf. Eq. 6, we infer the hyperparameters
a = 51.56(0.10), b = 49.22(0.12), σ1 = 0.5948(0.0072),
σ2 = 0.178(0.027) and β0 = 1.025(0.011). Comparing
true and predicted BI scores, we measure an average
standard error of EBI ∼ 16.8, a Pearson correlation

true-prediction of 0.62 and a coefficient of determina-
tion R2 of 0.35. This accuracy is comparable to the
one achieved by the models for FM-UE and CAHAI
scores. Nevertheless, the dataset Table 1 is very un-
balanced towards high BI scores (mean score 80, with
only 3 samples with a score below 25), so that the pre-
vious prediction performance will not generalise well
to homogeneous unseen BI data (i.e., the precision for
low scores is relatively poor).

Discussion and Conclusions
Our understanding of post-stroke motor recovery de-
pends on our capacity to evaluate and characterise im-
pairment and disability. Current standardised assess-
ment methods rely on human criteria and present rele-
vant unsystematic variability due to differences in the
evaluators’ training, lack of systematicity in the ad-
ministration of the assessments, and often are exces-
sively focused on one single aspect of the impairment
and/or disability.
Different rehabilitation approaches show a prefer-

ence for using (and even targeting) specific assessment
methods for the evaluation of their therapeutic effi-
cacy, and often these methods have been developed by
the same team of authors. For example, the effective-
ness of Constraint-Induced Movement Therapy [19] is
usually evaluated using the Wolf Motor Function Test
[20] and the Motor Analog Scale [21], while the effec-
tivity of occupational therapy has been frequently as-
sessed using the Barthel Index [22] and the Functional
Independence Measure [23].
Thus, there is an urgent need to establish alternative

methods for a common evaluation protocol and charac-
terisation of the hemiparesis phenotype, thus allowing
us to identify specific impairment features that could
advance our understanding of the recovery dynamics
and guide the design of effective rehabilitation ther-
apies. In pursuing this objective, we have conducted
a careful analysis of the raw kinematic data from
the upper-extremities of 191 individuals with post-
stroke hemiparesis, and we have constructed a predic-
tive model of instantaneous function and recovery. Our
results reveal a new digital biomarker of upper-limbs
motor impairment, the Total Goal Directed Movement
(TGDM), which relates to the patients range of mo-
tion during the execution of meaningful goal-oriented
reaching movements. The TGDM strongly correlates
with the level of impairment captured by the FM-UE
and the level of disability captured by the CAHAI,
and also presents predictive power about the patients’
progress, showing high correlations with the magni-
tudes of improvement and deterioration estimated by
both scales. This result is especially interesting given
the current limited evidence about the responsiveness
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of kinematic outcome measures of reaching perfor-
mance in people with hemiparesis after stroke [24].
According to a recent systematic review on the clini-
metric properties of kinematic upper limb assessments
[9] only two papers captured responsiveness (i.e., abil-
ity to capture longitudinal changes in the measured
construct), and just nine parameters showed enough
evidence to predict recovery (i.e., number of velocity
peaks, trunk displacement, task/movement time). The
quality of evidence however was very low for all met-
rics. Further, current recommendations point out that
wearables with integrated Inertial Measurement Units
and vision-based tracking systems are insufficient to
measure the quality of movement and improvement in
motor function. However, our findings, together with
the growing evidence supporting distance travelled as
an accurate and responsive digital biomarker of recov-
ery [25], suggest the opposite.
We built a model of instantaneous motor impairment

and recovery as measured by FM-UE that capitalises
on the information captured by the TGDM variable,
and we validated it in terms of external validity (R2

: 0.38), robustness (test-retest reliability) (r > 0.89),
responsiveness (R2 : 0.57), sensitivity (TPR : 95%)
and generalisation (r > 0.43). The relevance of our
results is emphasised by their consistency across clini-
metric properties and by their generalisation poten-
tial, relying on a large and heterogeneous dataset of
patients at different stages post-stroke. We believe
that the applicability of the TGDM and its derived
models to evaluate impairment and motor recovery is
promising for a number of reasons: 1) it can be de-
rived from unimanual displacements executed in the
horizontal plane, 2) it does generalise to other tasks
involving two-dimensional horizontal reaching move-
ments towards targets, and 3) it can be estimated
during unsupervised motor training. Our results pro-
vide an early example of how fully digital biomarkers
of deficits and recovery post-stroke can provide new
digital health methods and technologies for neurore-
habilitation that can generalise beyond the clinic and
serve continuous high-resolution diagnostics, prognos-
tics and intervention.

Appendix
In Table 5 we report the descriptive statistics of the
secondary variables (functions of primary variables in
Table 1) for dataset ‘Spheroids’.
The distribution of the Pearson correlation coeffi-

cients of the FM-UE score with all the variables in
Tables 1, 5 is shown in Fig. 12. This is compared with
the distribution obtained with randomised outcome,
whose standard deviation is r ≃ 0.081.
In Table 6 we report the descriptive statistics of the

secondary variables (functions of primary variables in

Table 3) for the ‘responsiveness’ dataset (change of
variables and clinical scales between two RGS sessions
of the same patient with a delay of at least 16 days).
In Fig. 13 we show the Pearson’s r between J(σ) Eq.

2 and the clinical scales as function of the timescale σ
for the database ‘Whac-A-Mole’, cf. Sec. ‘Generalisa-
tion’. This is a dataset composed of 37 RGS sessions
with limited range of the clinical scales: FM-UE range
of observations [5, 60], mean 37, SD 14; CAHAI range
of observations [7, 49], mean 32, SD 15; BI range of
observations [48, 100], mean 85, SD 13. The ‘Whac-A-
Mole’ scenario requires movements in all 2D place (un-
like ‘Spheroids’ scenario, cf. Table 1), so we define two
independent J(σ): one associated to the front/back
trajectory and one associated to the lateral (left/right)
trajectory. In Fig. 13 we show that in both directions
there is a peak in the Pearson’s r at about σ = 1 s
for all three clinical scales. In correspondence of these
two peaks, we define two variables: TGDMfb (Total-
goal directed movement in front/back direction) and
TGDMlr (Total-goal directed movement in left-right
direction). We stress that the timescale of the peak is
roughly equivalent to the timescale of the gameplay
of the ‘Whac-A-Mole’ scenario. Finally, we note that
for the same analysis done in the ‘Spheroids’ scenario
we observe two clear peaks in the lateral direction (cf.
Fig. 3). In ‘Whac-A-Mole’ instead the high-frequency
peak is not clearly visible. One factor that may affect
this difference is that the gameplay of ‘Whac-A-Mole’
is faster than ‘Spheroids’ (roughly 1 s instead of 10
s), so that the separation between the two potential
peaks is smaller. Other factors that may influence the
absence of the second peak are the fact that the game-
play is 2D (so that the speed in one direction is less
informative) or the inadequate time-resolution of the
camera (different from the one used for ‘Spheroids’).
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• FM-UE: Fugl-Meyer Assessment for Upper Extremities
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• SD: Standard Deviation

• TGDM: Total-Goal Directed Movement
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• perc-hit (Figs. 4,7): performance (percentage hit)
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• num-sess (Figs. 4,7): sessions completed so far

• days-s (Figs. 4,7): time since stroke (days)

• paretic-dom (Figs. 4,7): dominant side more affected

• MDC: Minimal Detectable Change

• TPR: True Positive Rate
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Table 5 Characteristics of the secondary variables for the 191 samples composing the main dataset (obtained from first order variables,
cf. Table 1). The r columns refers to the Pearson correlation coefficients with the FM-UE, CAHAI, and BI clinical scales, respectively.
Correlations below the significance threshold r ∼ 0.081 (cf. Fig. 12 in Appendix) are in grey. From the time since stroke we obtain the
categories Acute (5-90 days), Sub-acute (3-12 months) and Chronic (over 1 year). The ‘instantaneous’ variables obtained directly from
game log-file are in Italic type. The ‘Diff.’ variables are obtained as the difference between the value observed for the less affected arm
and the value for the more affected one. The ‘Log.’ variables are obtained as the natural logarithm of the corresponding first order
variables.

Variables Range [min, max] Mean SD r(FM-UE) r(CAHAI) r(BI)
15. Chronic yes/no 57/134 - -0.25 -0.17 0.14

<Subacute> yes/no 74/117 - - - -
16. Acute yes/no 60/131 - 0.32 0.18 -0.15
17. Diff. work area (m2) [-1.3, 1.6] 0.25 0.50 -0.31 -0.29 -0.069
18. Diff. distance covered (m) [-160, 120] 11 34 -0.32 -0.26 -0.12
19. Diff. performance (% success) [-0.22, 0.53] 0.087 0.13 -0.26 -0.22 -0.16
20. Diff. maximum reaching speed (m/s) [-61, 98] 8.1 23 -0.22 -0.22 -0.15
21. Diff. difficulty level reached [-0.47,0.63] 0.11 0.19 -0.22 -0.15 -0.058
22. Diff. smoothness (mm) [-2.6, 4.4] 0.34 0.75 -0.29 -0.28 -0.20
23. Diff. TGDM (m) [-0.035, 0.084] 0.015 0.021 -0.52 -0.47 -0.24
24. Log. time since stroke (days) [1.6, 8.0] 4.8 1.7 -0.24 -0.076 0.36
25. Log. sessions completed so far [0.0, 3.9] 1.8 0.9 0.29 0.38 0.42
26. Log. work area [-4.3, 0.62] -1.3 0.9 0.40 0.38 0.19
27. Log. distance covered [0.92, 5.5] 3.8 0.7 0.26 0.32 0.34
28. Log. maximum reaching speed [1.0, 4.5] 2.6 0.73 0.26 0.20 0.045
29. Log. difficulty level reached [-0.16, 0.60] 0.25 0.14 0.44 0.50 0.45
30. Log. smoothness [-1.7, 1.4] 0.012 0.48 0.48 0.46 0.33
31. Log. TGDM [-4.7, -2.1] -2.9 0.48 0.52 0.56 0.43

Table 6 Characteristics of the secondary variables for the 54 samples composing the responsiveness dataset (obtained from first order
variables, cf. Table 3). We select couple of sessions of same patient with a delay of at least 16 days from the main dataset, cf. Table 1.
The r columns refers to the Pearson correlation coefficients with the FM-UE, CAHAI, and BI clinical scales, respectively. Correlations
below the significance threshold r ∼ 0.14 are in grey. The ‘instantaneous’ variables obtained directly from game log-file are in Italic type.
The ‘Diff.’ variables are obtained as the difference between the value observed for the less affected arm and the value for the more
affected one. The ‘Log.’ variables are obtained as the natural logarithm of the corresponding first order variables.

Variables Range [min,max] Mean SD r(∆FM-UE) r(∆CAHAI) r(∆BI)
15. Chronic yes/no 10/44 - -0.30 -0.44 -0.38

<Subacute> yes/no 10/44 - - - -
16. Acute yes/no 34/20 - 0.19 0.44 0.53
17. Change in diff. work area (m) [-1.5, 1.8] -0.13 0.67 -0.30 -0.060 -0.24
18. Change in diff. distance covered (m) [-94, 150] 3.1 40 -0.45 0.23 -0.30
19. Change in diff. performance (% success) [-0.22, 0.53] 0.087 0.13 0.18 0.10 0.17
20. Change in diff. maximum reaching speed (m/s) [-76, 71] -5.1 30 -0.28 -0.16 -0.32
21. Change in diff. difficulty [-0.46, 0.62] 0.0095 0.21 0.064 0.12 0.14
22. Change in diff. smoothness (mm) [-2.7, 1.4] -0.17 0.85 -0.41 -0.26 -0.47
23. Change in diff. TGDM (m) [-0.12, 0.088] -0.0050 0.040 -0.51 -0.43 -0.56
24. Log. time since stroke (at first) [0.41, 1.2] 0.73 0.16 -0.36 -0.37 -0.40
25. Log. sessions completed so far (at first) [0, 1.2] 0.52 0.39 -0.55 -0.36 -0.55
26. Change in Log. work area [-6.4, 1.5] -0.79 1.6 0.062 0.057 0.11
27. Change in Log. distance covered [-0.90, 5.6] 3.0 2.0 0.18 0.16 0.17
28. Change in Log. maximum reaching speed [-1.8, 5.6] 1.4 2.3 0.15 0.30 0.17
29. Change in Log. difficulty [-3.8, 0] -1.4 0.90 0.064 0.13 0.024
30. Change in Log. smoothness [-2.0, 3.0] 0.63 1.1 0.31 0.32 0.37
31. Change in Log. TGDM [-10, 0.5] -1.4 1.8 0.035 0.17 0.037

Days between sessions [17,89] 49 26 0.037 0.31 0.39
Initial FM score [13,66] 44 15 -0.44 -0.20 -0.13
Initial CAHAI score [14,90] 48 22 -0.50 -0.50 -0.38
Initial BI score [31,100] 72 23 -0.60 -0.64 -0.82
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Verschure, P.F.: Counteracting learned non-use in chronic stroke

patients with reinforcement-induced movement therapy. Journal of

neuroengineering and rehabilitation 13(1), 1–15 (2016)

15. Ballester, B.R., Maier, M., Domingo, D.A., Aguilar, A., Mura, A.,

Pareja, L.T., Esteve, M.F.G., Verschure, P.F.M.J.: Adaptive vr-based

rehabilitation to prevent deterioration in adults with cerebral palsy. In:

2019 International Conference on Virtual Rehabilitation (ICVR), pp.

1–7 (2019). doi:10.1109/ICVR46560.2019.8994754

16. Jarvis, R.A.: On the identification of the convex hull of a finite set of

points in the plane. Information Processing Letters 2(1), 18–21

(1973). doi:10.1016/0020-0190(73)90020-3

17. Cameirão, M.S., i Badia, S.B., Oller, E.D., Verschure, P.F.:

Neurorehabilitation using the virtual reality based rehabilitation gaming

system: methodology, design, psychometrics, usability and validation.

Journal of neuroengineering and rehabilitation 7(1), 1–14 (2010)

18. Nirme, J., Duff, A., Verschure, P.F.: Adaptive rehabilitation gaming

system: on-line individualization of stroke rehabilitation. In: 2011

Annual International Conference of the IEEE Engineering in Medicine

and Biology Society, pp. 6749–6752 (2011). IEEE

19. Wolf, S.L., Winstein, C.J., Miller, J.P., Taub, E., Uswatte, G., Morris,

D., Giuliani, C., Light, K.E., Nichols-Larsen, D., EXCITE Investigators,

f.t., et al.: Effect of constraint-induced movement therapy on upper

extremity function 3 to 9 months after stroke: the excite randomized

clinical trial. Jama 296(17), 2095–2104 (2006)

20. Wolf, S.L., Catlin, P.A., Ellis, M., Archer, A.L., Morgan, B.,

Piacentino, A.: Assessing wolf motor function test as outcome measure

for research in patients after stroke. Stroke 32(7), 1635–1639 (2001)

21. Taub, E., Morris, D.M., Crago, J., King, D.K., Bowman, M., Bryson,

C., Bishop, S., Pearson, S., Shaw, S.E.: Wolf motor function test

(wmft) manual. Birmingham: University of Alabama, CI Therapy

Research Group (2011)

22. Mahoney, F.I., Barthel, D.W.: Functional evaluation: the barthel index:

a simple index of independence useful in scoring improvement in the

rehabilitation of the chronically ill. Maryland state medical journal

(1965)

23. Ottenbacher, K.J., Hsu, Y., Granger, C.V., Fiedler, R.C.: The

reliability of the functional independence measure: a quantitative

review. Archives of physical medicine and rehabilitation 77(12),

1226–1232 (1996)

24. Veerbeek, J.M., Langbroek-Amersfoort, A.C., Van Wegen, E.E.,

Meskers, C.G., Kwakkel, G.: Effects of robot-assisted therapy for the

upper limb after stroke: a systematic review and meta-analysis.

Neurorehabilitation and neural repair 31(2), 107–121 (2017)

25. Wagner, J.M., Rhodes, J.A., Patten, C.: Reproducibility and minimal

detectable change of three-dimensional kinematic analysis of reaching

tasks in people with hemiparesis after stroke. Physical therapy 88(5),

652–663 (2008)



Antenucci et al. Page 16 of 16

Figure 12 Distribution of Pearson correlation coefficients
measured between the FM-UE scores and all the variables in
Tables 1,5. The light blue line is the distribution obtained for
random outcomes.
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Figure 13 Pearson correlation coefficient between clinical
scales (FM-UE, CAHAI, BI) and J(σ) Eq. 2 in the front/back
direction (top) and left/right direction (bottom) at different
values of the timescale σ on dataset “Whac-A-Mole”
(N = 37, cf. Sec. ‘Generalisation’). For the FM-UE score, the
peaks are at (r = 0.54 for σ = 1.3s) for the frontal direction
and at (r = 0.50 at σ = 1.1s) for the lateral direction. For the
CAHAI score, the peaks are at (r = 0.44 for σ = 0.78s) for
the frontal direction and at (r = 0.43 at σ = 0.31s) for the
lateral direction. For the BI, the peaks are at (r = 0.44 for
σ = 1.2s) for the frontal direction and at (r = 0.49 at
σ = 1.1s) for the lateral direction.


