Simulating auditory and visual sensorineural prostheses: a comparative review

L E Hallum, G Dagnelie, G J Suaning, N H Lovell
2007 Journal of Neural Engineering  
Microelectronic vision prosthesis proposes to render luminous spots (so-called phosphenes) in the visual field of the otherwise blind subject by way of an implanted array of stimulating electrodes, and in doing so restore some spatial vision. There are now many research teams worldwide working towards a therapeutic device, analogous to the cochlear implant, for the profoundly blind. Despite the similarities between the cochlear implant and vision prostheses, there are few instances in the
more » ... ture where the two approaches are compared and contrasted with a mind to informing the science and engineering of the latter. This is the focus of the present review; specifically, our interest is psychophysics and signal processing. Firstly, we examine the cochlear implant, and review a handful of psychophysical work: the acoustic simulation of cochlear implants and the method used. We focus on the use of normally hearing subjects (played coloured noise bands or sine waves) as a means of investigating cochlear-implant efficacy and speech processing algorithms. These results provide guidance to vision researchers, for they address the interpretation of simulation data, and flag key areas, such as 'artificial' perception in the presence of noise, that require experimental work in coming years. Secondly, we provide an up-to-date review of the body of analogous psychophysical work: the visual simulation, involving normal observers, of microelectronic vision prosthesis. These simulations allow predictions as to the likely clinical efficacy of the prosthesis; indeed, results to date suggest that a number on the order of 100 implanted electrodes will afford subjects mobility and recognition of faces (and other complex stimuli), while even fewer electrodes facilitate reading printed text and very simple visuomanual tasks. Further, the simulations allow investigations of image and signal processing strategies, plus they provide researchers in the field, and other interested persons, a perceptual experience that approximates what a prosthesis will likely afford implantees.
doi:10.1088/1741-2560/4/1/s08 pmid:17325417 fatcat:hoopnvhmdfe37gskadjydjneom