Proof-checking Euclid [article]

Michael Beeson and Julien Narboux and Freek Wiedijk
2018 arXiv   pre-print
We used computer proof-checking methods to verify the correctness of our proofs of the propositions in Euclid Book I. We used axioms as close as possible to those of Euclid, in a language closely related to that used in Tarski's formal geometry. We used proofs as close as possible to those given by Euclid, but filling Euclid's gaps and correcting errors. Euclid Book I has 48 propositions, we proved 235 theorems. The extras were partly "Book Zero", preliminaries of a very fundamental nature,
more » ... ly propositions that Euclid omitted but were used implicitly, partly advanced theorems that we found necessary to fill Euclid's gaps, and partly just variants of Euclid's propositions. We wrote these proofs in a simple fragment of first-order logic corresponding to Euclid's logic, debugged them using a custom software tool, and then checked them in the well-known and trusted proof checkers HOL Light and Coq.
arXiv:1710.00787v2 fatcat:aa7l3r4ncvhztddsi6pzkeqbva