A copy of this work was available on the public web and has been preserved in the Wayback Machine. The capture dates from 2019; you can also visit <a rel="external noopener" href="http://downloads.hindawi.com/journals/bmri/2008/259174.pdf">the original URL</a>. The file type is <code>application/pdf</code>.
Bio-Inspired Microsystem for Robust Genetic Assay Recognition
<span title="">2008</span>
<i title="Hindawi Limited">
<a target="_blank" rel="noopener" href="https://fatcat.wiki/container/im7oe5kk5zbrbou26efdztq23i" style="color: black;">Journal of Biomedicine and Biotechnology</a>
</i>
A compact integrated system-on-chip (SoC) architecture solution for robust, real-time, and on-site genetic analysis has been proposed. This microsystem solution is noise-tolerable and suitable for analyzing the weak fluorescence patterns from a PCR prepared dual-labeled DNA microchip assay. In the architecture, a preceding VLSI differential logarithm microchip is designed for effectively computing the logarithm of the normalized input fluorescence signals. A posterior VLSI artificial neural
<span class="external-identifiers">
<a target="_blank" rel="external noopener noreferrer" href="https://doi.org/10.1155/2008/259174">doi:10.1155/2008/259174</a>
<a target="_blank" rel="external noopener" href="https://www.ncbi.nlm.nih.gov/pubmed/18566679">pmid:18566679</a>
<a target="_blank" rel="external noopener" href="https://pubmed.ncbi.nlm.nih.gov/PMC2426746/">pmcid:PMC2426746</a>
<a target="_blank" rel="external noopener" href="https://fatcat.wiki/release/2bzfdwlphrfxrhgpyd2jbqhnhm">fatcat:2bzfdwlphrfxrhgpyd2jbqhnhm</a>
</span>
more »
... ork (ANN) processor chip is used for analyzing the processed signals from the differential logarithm stage. A single-channel logarithmic circuit was fabricated and characterized. A prototype ANN chip with unsupervised winner-take-all (WTA) function was designed, fabricated, and tested. An ANN learning algorithm using a novel sigmoid-logarithmic transfer function based on the supervised backpropagation (BP) algorithm is proposed for robustly recognizing low-intensity patterns. Our results show that the trained new ANN can recognize low-fluorescence patterns better than an ANN using the conventional sigmoid function.
<a target="_blank" rel="noopener" href="https://web.archive.org/web/20190430175507/http://downloads.hindawi.com/journals/bmri/2008/259174.pdf" title="fulltext PDF download" data-goatcounter-click="serp-fulltext" data-goatcounter-title="serp-fulltext">
<button class="ui simple right pointing dropdown compact black labeled icon button serp-button">
<i class="icon ia-icon"></i>
Web Archive
[PDF]
<div class="menu fulltext-thumbnail">
<img src="https://blobs.fatcat.wiki/thumbnail/pdf/a6/15/a6150d42adf25352162f8f5f2d31ed366b6b9e83.180px.jpg" alt="fulltext thumbnail" loading="lazy">
</div>
</button>
</a>
<a target="_blank" rel="external noopener noreferrer" href="https://doi.org/10.1155/2008/259174">
<button class="ui left aligned compact blue labeled icon button serp-button">
<i class="unlock alternate icon" style="background-color: #fb971f;"></i>
hindawi.com
</button>
</a>
<a target="_blank" rel="external noopener" href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2426746" title="pubmed link">
<button class="ui compact blue labeled icon button serp-button">
<i class="file alternate outline icon"></i>
pubmed.gov
</button>
</a>