Wireless Cooperative Networks

Andrea Conti, Jiangzhou Wang, Hyundong Shin, Ramesh Annavajjala, Moe Z. Win
2008 EURASIP Journal on Advances in Signal Processing  
Cooperative networks are gaining an increasing interest in information and communications technologies since such networks can improve communication capability and provide a fertile environment for the development of context-aware services. Cooperative communications and networking represent a new paradigm which involves both transmission and distributed processing, promising significant increase of capacity and diversity gain in wireless networks. From one hand, the integration of long-range
more » ... d short-range wireless communication networks (e.g., infrastructured networks such as 3G, wireless ad hoc networks, and wireless sensor networks) improves the performance in terms of both area coverage and quality of service (QoS). On the other hand, the cooperation among nodes, as in the case of wireless sensor networks, allows a distributed space-time signal processing which enables, among others, environmental monitoring, localization techniques, and distributed measurements, with a reduced complexity or energy consumption per node. The relevance of this topic is also reflected by numerous technical sessions in current international conferences as well as by the increasing number of national and international projects on these aspects. This special issue aims to collect cutting-edge research achievements in this area. We solicited papers that present original and unpublished work on topics including, but not limited to, the following: physical layer models, for example, channel models (statistics, fading, MIMO, feedback); device constraints (power, energy, multiple access, synchronization) and resource management; distributed processing for cooperative networks (e.g., distributed compression in wireless sensor networks, channel and network codes design); performance metrics (e.g., capacity, cost, outage, delay, energy, scaling laws); cross-layer issues, for example, PHY/MAC/NET interactions, joint source-channel coding, separation theorems; multiterminal information theory; multihop communications; integration of wireless heterogeneous (long-and short-range) systems. In "Asymptotic analysis of large cooperative relay networks using random matrix theory" by H. Li et al., cooperative relay networks with large number of nodes are analyzed, and in particular the asymptotic performance improvement of cooperative transmission over direct transmission and relay transmission is analyzed using random matrix theory. The key idea is to investigate the eigenvalue distributions related to channel capacity and to analyze the moments of this distribution in large wireless networks. The analysis in this paper provides important tools for the understanding and the design of large cooperative wireless networks. H. Van Khuong and T. Le-Ngoc propose, in the paper "Bandwidth-efficient cooperative relaying schemes with multi-antenna relay," coded cooperative relaying schemes in which all successfully decoded signals from multiple sources are forwarded simultaneously by a multiantenna relay to a common multiantenna destination to increase bandwidth efficiency. These schemes facilitate various retransmission strategies at relay together with single-user and multiuser iterative decoding techniques at destination, suitable for tradeoffs between performance, latency, and complexity. The problem of choosing the best relay node in relaying networks is addressed in "Performance of multiple-relay cooperative diversity systems with best-relay selection over rayleigh fading channels" by S. S. Ikki and M. H. Ahmed. They consider an amplify-and-forward (AF) cooperative diversity system where a source node communicates with a
doi:10.1155/2008/810149 fatcat:c6vwhztbpjaglnjnz2fsdpgvam