Enhanced Chemotherapeutic Efficacy of PLGA-Encapsulated Epigallocatechin Gallate (EGCG) Against Human Lung Cancer

Zhang L, Chen W, Tu G, Chen X, Lu Y, Wu L, Zheng D
2020 International Journal of Nanomedicine  
Lingyu Zhang,1,* Wenshu Chen,2,* Guihui Tu,1 Xingyong Chen,2 Youguang Lu,3 Lixian Wu,1 Dali Zheng3 1School of Pharmacy, Fujian Medical University, University Town, Fuzhou 350122, People's Republic of China; 2Shengli Clinical College, Fujian Medical University, Fuzhou 350001, People's Republic of China; 3Key Laboratory of Stomatology of Fujian Province, School and Hospital of Stomatology, Fujian Medical University, Fuzhou, 350004, People's Republic of China*These authors contributed equally to
more » ... ibuted equally to this workCorrespondence: Dali ZhengKey Laboratory of Stomatology of Fujian Province, Hospital of Stomatology, Fujian Medical University, 88 Jiaotong Road, Fuzhou 350004, People's Republic of ChinaEmail dalizheng@fjmu.edu.cnLixian WuSchool of Pharmacy, Fujian Medical University, 1 Xueyuan Road, University Town, Fuzhou 350122, People's Republic of ChinaEmail 18259000966@126.comPurpose: Currently, the clinical benefits of tea polyphenols have contributed to the development of efficient systemic delivery systems with adequate bioavailability and stability. In this study, we aimed to establish a nanoparticle model to overcome the shortcomings of epigallocatechin gallate (EGCG) in the treatment of lung cancer.Materials and Methods: Poly(lactic-co-glycolic acid) (PLGA) nanoparticles (NPs) loaded with EGCG were prepared by the oil-in-water emulsion solvent evaporation technique. The characteristics of NPs, entrapment efficiency, and in vitro release were systematically evaluated. The cellular uptake, cytotoxic activity, and the effect of the formulation on cellular apoptosis of free-from EGCG and the NPs were compared. The interaction between protein-NF-κB and EGCG was detected by bio-layer interferometry (BLI). NF-κB signaling was evaluated by Western blotting and q-RT-PCR. The efficacy of the optimized nanoformulation was evaluated using a patient-derived tumor xenograft (PDX) model.Results: EGCG-loaded NPs (175.8± 3.8 nm in size) demonstrated its optimal efficacy, with approximately 86.0% of encapsulation efficiency and 14.2% of [...]
doaj:ef888df75848427bb36f8715450eca99 fatcat:652ixzhcbjaopdduatgxytuhqy