A Soft Computing System for Modelling the Manufacture of Steel Components [chapter]

Javier Sedano, José Ramón Villar, Leticia Curiel, Emilio Corchado, Andrés Bustillo
Soft Computing Methods for Practical Environment Solutions  
In this paper we present a soft computing system developed to optimize the laser milling manufacture of high value steel components, a relatively new and interesting industrial technique. This multidisciplinary study is based on the application of neural projection models in conjunction with identification systems, in order to find the optimal operating conditions in this industrial issue. Sensors on a laser milling centre capture the data used in this industrial case study defined under the
more » ... me of a machine-tool that manufactures steel components like high value molds and dies. The presented model is based on a two-phase application. The first phase uses a neural projection model capable of determine if the data collected is informative enough based on the existence of internal patterns. The second phase is focus on identifying a model for the laser-milling process based on low-order models such as Black Box ones. The whole system is capable of approximating the optimal form of the model. Finally, it is shown that the Box-Jenkins algorithm, which calculates the function of a linear system from its input and output samples, is the most appropriate model to control such industrial task for the case of steel components. Laser milling, in general, consists on the controlled evaporation of waste material due to its interaction with high-energy pulsed laser beams. The operator of a con-
doi:10.4018/978-1-61520-893-7.ch009 fatcat:ngz5mmzswzem3j7mqithtfcyw4