A copy of this work was available on the public web and has been preserved in the Wayback Machine. The capture dates from 2020; you can also visit the original URL.
The file type is application/pdf
.
Comparing U-Net Based Models for Denoising Color Images
2020
AI
Digital images often become corrupted by undesirable noise during the process of acquisition, compression, storage, and transmission. Although the kinds of digital noise are varied, current denoising studies focus on denoising only a single and specific kind of noise using a devoted deep-learning model. Lack of generalization is a major limitation of these models. They cannot be extended to filter image noises other than those for which they are designed. This study deals with the design and
doi:10.3390/ai1040029
fatcat:4qns4lgtvvgkvkyjk6xwia2gzi