A copy of this work was available on the public web and has been preserved in the Wayback Machine. The capture dates from 2022; you can also visit the original URL.
The file type is application/pdf
.
Unsupervised Discriminative Language Model Training for Machine Translation using Simulated Confusion Sets
2010
International Conference on Computational Linguistics
An unsupervised discriminative training procedure is proposed for estimating a language model (LM) for machine translation (MT). An English-to-English synchronous context-free grammar is derived from a baseline MT system to capture translation alternatives: pairs of words, phrases or other sentence fragments that potentially compete to be the translation of the same source-language fragment. Using this grammar, a set of impostor sentences is then created for each English sentence to simulate
dblp:conf/coling/LiWKE10
fatcat:o5ghue4syndlbcerzq5w7x5ea4