Cognitive computing systems: Algorithms and applications for networks of neurosynaptic cores

Steve K. Esser, Alexander Andreopoulos, Rathinakumar Appuswamy, Pallab Datta, Davis Barch, Arnon Amir, John Arthur, Andrew Cassidy, Myron Flickner, Paul Merolla, Shyamal Chandra, Nicola Basilico (+11 others)
2013 The 2013 International Joint Conference on Neural Networks (IJCNN)  
Marching along the DARPA SyNAPSE roadmap, IBM unveils a trilogy of innovations towards the TrueNorth cognitive computing system inspired by the brain's function and efficiency. The non-von Neumann nature of the TrueNorth architecture necessitates a novel approach to efficient system design. To this end, we have developed a set of abstractions, algorithms, and applications that are natively efficient for TrueNorth. First, we developed repeatedly-used abstractions that span neural codes (such as
more » ... inary, rate, population, and time-to-spike), long-range connectivity, and short-range connectivity. Second, we implemented ten algorithms that include convolution networks, spectral content estimators, liquid state machines, restricted Boltzmann machines, hidden Markov models, looming detection, temporal pattern matching, and various classifiers. Third, we demonstrate seven applications that include speaker recognition, music composer recognition, digit recognition, sequence prediction, collision avoidance, optical flow, and eye detection. Our results showcase the parallelism, versatility, rich connectivity, spatio-temporality, and multi-modality of the TrueNorth architecture as well as compositionality of the corelet programming paradigm and the flexibility of the underlying neuron model.
doi:10.1109/ijcnn.2013.6706746 dblp:conf/ijcnn/EsserAADBAACFMCBCZZAKWRMNSM13 fatcat:bjkz56ezerg4rcxykd7uyyftsi